Indonesian BERT2BERT Summarization Model
Finetuned BERT-base summarization model for Indonesian.
Finetuning Corpus
bert2bert-indonesian-summarization
model is based on cahya/bert-base-indonesian-1.5G
by cahya, finetuned using id_liputan6 dataset.
Load Finetuned Model
from transformers import BertTokenizer, EncoderDecoderModel
tokenizer = BertTokenizer.from_pretrained("cahya/bert2bert-indonesian-summarization")
tokenizer.bos_token = tokenizer.cls_token
tokenizer.eos_token = tokenizer.sep_token
model = EncoderDecoderModel.from_pretrained("cahya/bert2bert-indonesian-summarization")
Code Sample
from transformers import BertTokenizer, EncoderDecoderModel
tokenizer = BertTokenizer.from_pretrained("cahya/bert2bert-indonesian-summarization")
tokenizer.bos_token = tokenizer.cls_token
tokenizer.eos_token = tokenizer.sep_token
model = EncoderDecoderModel.from_pretrained("cahya/bert2bert-indonesian-summarization")
#
ARTICLE_TO_SUMMARIZE = ""
# generate summary
input_ids = tokenizer.encode(ARTICLE_TO_SUMMARIZE, return_tensors='pt')
summary_ids = model.generate(input_ids,
min_length=20,
max_length=80,
num_beams=10,
repetition_penalty=2.5,
length_penalty=1.0,
early_stopping=True,
no_repeat_ngram_size=2,
use_cache=True,
do_sample = True,
temperature = 0.8,
top_k = 50,
top_p = 0.95)
summary_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
print(summary_text)
Output:
- Downloads last month
- 594
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.