Edit model card

Indonesian DistilBERT base model (uncased)

Model description

This model is a distilled version of the Indonesian BERT base model. This model is uncased.

This is one of several other language models that have been pre-trained with indonesian datasets. More detail about its usage on downstream tasks (text classification, text generation, etc) is available at Transformer based Indonesian Language Models

Intended uses & limitations

How to use

You can use this model directly with a pipeline for masked language modeling:

>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='cahya/distilbert-base-indonesian')
>>> unmasker("Ayahku sedang bekerja di sawah untuk [MASK] padi")

[
  {
    "sequence": "[CLS] ayahku sedang bekerja di sawah untuk menanam padi [SEP]",
    "score": 0.6853187084197998,
    "token": 12712,
    "token_str": "menanam"
  },
  {
    "sequence": "[CLS] ayahku sedang bekerja di sawah untuk bertani padi [SEP]",
    "score": 0.03739545866847038,
    "token": 15484,
    "token_str": "bertani"
  },
  {
    "sequence": "[CLS] ayahku sedang bekerja di sawah untuk memetik padi [SEP]",
    "score": 0.02742469497025013,
    "token": 30338,
    "token_str": "memetik"
  },
  {
    "sequence": "[CLS] ayahku sedang bekerja di sawah untuk penggilingan padi [SEP]",
    "score": 0.02214187942445278,
    "token": 28252,
    "token_str": "penggilingan"
  },
  {
    "sequence": "[CLS] ayahku sedang bekerja di sawah untuk tanam padi [SEP]",
    "score": 0.0185895636677742,
    "token": 11308,
    "token_str": "tanam"
  }
]

Here is how to use this model to get the features of a given text in PyTorch:

from transformers import DistilBertTokenizer, DistilBertModel

model_name='cahya/distilbert-base-indonesian'
tokenizer = DistilBertTokenizer.from_pretrained(model_name)
model = DistilBertModel.from_pretrained(model_name)
text = "Silakan diganti dengan text apa saja."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)

and in Tensorflow:

from transformers import DistilBertTokenizer, TFDistilBertModel

model_name='cahya/distilbert-base-indonesian'
tokenizer = DistilBertTokenizer.from_pretrained(model_name)
model = TFDistilBertModel.from_pretrained(model_name)
text = "Silakan diganti dengan text apa saja."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)

Training data

This model was distiled with 522MB of indonesian Wikipedia and 1GB of indonesian newspapers. The texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are then of the form:

[CLS] Sentence A [SEP] Sentence B [SEP]

Downloads last month
1,087
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for cahya/distilbert-base-indonesian

Finetunes
4 models

Datasets used to train cahya/distilbert-base-indonesian