cahya's picture
updated the generator to use temperature and sampling
18301be
|
raw
history blame
1.67 kB
metadata
language: id
tags:
  - pipeline:summarization
  - summarization
  - t5
datasets:
  - id_liputan6

Indonesian T5 Summarization Base Model

Finetuned T5 base summarization model for Indonesian.

Finetuning Corpus

t5-base-indonesian-summarization-cased model is based on t5-base-bahasa-summarization-cased by huseinzol05, finetuned using id_liputan6 dataset.

Load Finetuned Model

from transformers import T5Tokenizer, T5Model, T5ForConditionalGeneration

tokenizer = T5Tokenizer.from_pretrained("cahya/t5-base-indonesian-summarization-cased")
model = T5ForConditionalGeneration.from_pretrained("cahya/t5-base-indonesian-summarization-cased")

Code Sample

from transformers import T5Tokenizer, T5ForConditionalGeneration

tokenizer = T5Tokenizer.from_pretrained("cahya/t5-base-indonesian-summarization-cased")
model = T5ForConditionalGeneration.from_pretrained("cahya/t5-base-indonesian-summarization-cased")

# 
ARTICLE_TO_SUMMARIZE = ""

# generate summary
input_ids = tokenizer.encode(ARTICLE_TO_SUMMARIZE, return_tensors='pt')
summary_ids = model.generate(input_ids,
            min_length=20,
            max_length=80,
            num_beams=10,
            repetition_penalty=2.5,
            length_penalty=1.0,
            early_stopping=True,
            no_repeat_ngram_size=2,
            use_cache=True,
            do_sample = True,
            temperature = 0.8,
            top_k = 50,
            top_p = 0.95)

summary_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
print(summary_text)

Output: