cahya's picture
updated the generator to use temperature and sampling
18301be
|
raw
history blame
1.67 kB
---
language: id
tags:
- pipeline:summarization
- summarization
- t5
datasets:
- id_liputan6
---
# Indonesian T5 Summarization Base Model
Finetuned T5 base summarization model for Indonesian.
## Finetuning Corpus
`t5-base-indonesian-summarization-cased` model is based on `t5-base-bahasa-summarization-cased` by [huseinzol05](https://huggingface.co/huseinzol05), finetuned using [id_liputan6](https://huggingface.co/datasets/id_liputan6) dataset.
## Load Finetuned Model
```python
from transformers import T5Tokenizer, T5Model, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("cahya/t5-base-indonesian-summarization-cased")
model = T5ForConditionalGeneration.from_pretrained("cahya/t5-base-indonesian-summarization-cased")
```
## Code Sample
```python
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("cahya/t5-base-indonesian-summarization-cased")
model = T5ForConditionalGeneration.from_pretrained("cahya/t5-base-indonesian-summarization-cased")
#
ARTICLE_TO_SUMMARIZE = ""
# generate summary
input_ids = tokenizer.encode(ARTICLE_TO_SUMMARIZE, return_tensors='pt')
summary_ids = model.generate(input_ids,
min_length=20,
max_length=80,
num_beams=10,
repetition_penalty=2.5,
length_penalty=1.0,
early_stopping=True,
no_repeat_ngram_size=2,
use_cache=True,
do_sample = True,
temperature = 0.8,
top_k = 50,
top_p = 0.95)
summary_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
print(summary_text)
```
Output:
```
```