File size: 10,382 Bytes
679a6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
from typing import List, Optional
from itertools import product
from collections import defaultdict
import torch
from torch import nn

import torch.nn.utils.parametrize as parametrize
    

def check_if_involution(indices: List[int]) -> bool:
    return all(indices[indices[idx]] == idx for idx in range(len(indices)))


def get_conv1d_output_length(
    input_length: int, kernel_size: int, stride_size: int = 1, pad_size: int = 0, dilation_rate: int = 1
) -> int:
    return (input_length + 2 * pad_size - dilation_rate * (kernel_size - 1) - 1) // stride_size + 1


def get_involution_indices(size: int) -> List[int]:
    return list(reversed(range(size)))


class RCEWeight(nn.Module):
    def __init__(
        self, input_involution_indices: List[int], output_involution_indices: List[int]
    ):
        if not check_if_involution(input_involution_indices) or not check_if_involution(
                output_involution_indices):
            raise ValueError(
                "`input_involution_indices` and `output_involution_indices` must be involutions"
            )

        super().__init__()
        self._input_involution_indices = input_involution_indices
        self._output_involution_indices = output_involution_indices
        self._input_involution_index_tensor = None
        self._output_involution_index_tensor = None
        self._device = None

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self._device != x.device:
            self._input_involution_index_tensor = torch.tensor(self._input_involution_indices, device=x.device)
            self._output_involution_index_tensor = torch.tensor(self._output_involution_indices, device=x.device)
            self._device = x.device

        output_involution_indices = self._output_involution_index_tensor
        input_involution_indices = self._input_involution_index_tensor
        return (x + x[output_involution_indices][:, input_involution_indices].flip(2)) / 2


class IEBias(nn.Module):
    def __init__(self, involution_indices: List[int]):
        if not check_if_involution(involution_indices):
            raise ValueError("`involution_indices` must be an involution")

        super().__init__()
        self._involution_indices = involution_indices
        self._involution_index_tensor = None
        self._device = None

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self._device != x.device:
            self._involution_index_tensor = torch.tensor(self._involution_indices, device=x.device)
            self._device = x.device

        involution_indices = self._involution_index_tensor
        return (x + x[involution_indices]) / 2


class IEWeight(nn.Module):
    def __init__(
        self, input_involution_indices: List[int], output_involution_indices: List[int]
    ):
        if not check_if_involution(input_involution_indices) or not check_if_involution(
                output_involution_indices):
            raise ValueError(
                "`input_involution_indices` and `output_involution_indices` must be involutions"
            )

        super().__init__()
        self._input_involution_indices = input_involution_indices
        self._output_involution_indices = output_involution_indices
        self._input_involution_index_tensor = None
        self._output_involution_index_tensor = None
        self._device = None

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self._device != x.device:
            self._input_involution_index_tensor = torch.tensor(self._input_involution_indices, device=x.device)
            self._output_involution_index_tensor = torch.tensor(self._output_involution_indices, device=x.device)
            self._device = x.device

        output_involution_indices = self._output_involution_index_tensor
        input_involution_indices = self._input_involution_index_tensor
        return (x + x[input_involution_indices][:, output_involution_indices]) / 2


class RCEByteNetBlock(nn.Module):
    def __init__(self, outer_involution_indices: List[int], inner_dim: int, kernel_size: int, dilation_rate: int = 1):
        outer_dim = len(outer_involution_indices)

        if outer_dim % 2 != 0:
            raise ValueError("`outer_involution_indices` must have an even length")

        if inner_dim % 2 != 0:
            raise ValueError("`inner_dim` must be even")

        if kernel_size % 2 == 0:
            raise ValueError("`kernel_size` must be odd")

        super().__init__()
        inner_involution_indices = get_involution_indices(inner_dim)

        layers = [
            nn.GroupNorm(1, outer_dim),
            nn.GELU(),
            nn.Conv1d(outer_dim, inner_dim, kernel_size=1),
            nn.GroupNorm(1, inner_dim),
            nn.GELU(),
            nn.Conv1d(inner_dim, inner_dim, kernel_size, dilation=dilation_rate),
            nn.GroupNorm(1, inner_dim),
            nn.GELU(),
            nn.Conv1d(inner_dim, outer_dim, kernel_size=1)
        ]
        parametrize.register_parametrization(
            layers[2], "weight",
            RCEWeight(outer_involution_indices, inner_involution_indices)
        )
        parametrize.register_parametrization(
            layers[2], "bias",
            IEBias(inner_involution_indices)
        )
        parametrize.register_parametrization(
            layers[5], "weight",
            RCEWeight(inner_involution_indices, inner_involution_indices)
        )
        parametrize.register_parametrization(
            layers[5], "bias",
            IEBias(inner_involution_indices)
        )
        parametrize.register_parametrization(
            layers[8], "weight",
            RCEWeight(inner_involution_indices, outer_involution_indices)
        )
        parametrize.register_parametrization(
            layers[8], "bias",
            IEBias(outer_involution_indices)
        )
        self.layers = nn.Sequential(*layers)
        self._kernel_size = kernel_size
        self._dilation_rate = dilation_rate

    @property
    def kernel_size(self):
        return self._kernel_size

    @property
    def dilation_rate(self):
        return self._dilation_rate

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        input_length = x.shape[2]
        output_length = get_conv1d_output_length(input_length, self.kernel_size, dilation_rate=self.dilation_rate)
        a = (input_length - output_length) // 2
        
        if a == 0:
            return self.layers(x) + x
        
        return self.layers(x) + x[:, :, a:-a]


class RCEByteNet(nn.Module):
    def __init__(
        self,
        input_involution_indices: List[int],
        output_involution_indices: List[int],
        dilation_rates: List[int],
        outer_dim: int,
        inner_dim: int,
        kernel_size: int,
        num_output_channels: int = 1,
        pad_token_idx: Optional[int] = None
    ):
        if pad_token_idx is not None and input_involution_indices[pad_token_idx] != pad_token_idx:
            raise ValueError("`input_involution_indices[pad_token_idx]` must be equal to `pad_token_idx`")

        super().__init__()
        vocab_size = len(input_involution_indices)
        outer_involution_indices = get_involution_indices(outer_dim)

        self.embedding = nn.Embedding(vocab_size, outer_dim, padding_idx=pad_token_idx)
        parametrize.register_parametrization(
            self.embedding, "weight",
            IEWeight(input_involution_indices, outer_involution_indices)
        )
        nn.init.normal_(self.embedding.weight, std=2**0.5)
        self.embedding.weight.data[self.embedding.padding_idx].zero_()
        self.embedding.requires_grad = False

        blocks = []
        receptive_field_size = 1

        for r in dilation_rates:
            blocks.append(RCEByteNetBlock(outer_involution_indices, inner_dim, kernel_size, dilation_rate=r))
            receptive_field_size += (kernel_size - 1) * r

        self.blocks = nn.Sequential(*blocks)

        self._num_output_channels = num_output_channels
        output_dim = len(output_involution_indices)
        output_involution_indices = [
                i * len(output_involution_indices) + j
                for i, j in product(range(num_output_channels), output_involution_indices)
            ]

        self.output_layers = nn.Sequential(
            nn.GroupNorm(1, outer_dim), nn.GELU(),
            nn.Conv1d(outer_dim, output_dim * num_output_channels, kernel_size=1)
        )
        parametrize.register_parametrization(
            self.output_layers[-1], "weight", RCEWeight(outer_involution_indices, output_involution_indices)
        )
        parametrize.register_parametrization(self.output_layers[-1], "bias", IEBias(output_involution_indices))

    def forward(self, input_tensor: torch.Tensor) -> torch.Tensor:
        x = self.blocks(self.embedding(input_tensor).swapaxes(1, 2))
        output_tensor = self.output_layers(x).swapaxes(1, 2)
        output_dim = output_tensor.shape[2] // self._num_output_channels
        shape = list(output_tensor.shape[:-1]) + [self._num_output_channels, output_dim]
        return output_tensor.reshape(shape)
    
from transformers import PreTrainedModel
from .configuration_revar import ReVarConfig

class ReVarModel(PreTrainedModel):
    config_class = ReVarConfig

    def __init__(self, config, **kwargs):
        super().__init__(config, **kwargs)

        dilation_rates = config.num_stacks * [config.kernel_size**i for i in range(0, config.stack_size)]

        self._model = RCEByteNet(
            input_involution_indices = [3, 2, 1, 0, 4, 5],
            output_involution_indices=[3, 2, 1, 0],
            dilation_rates=dilation_rates,
            outer_dim = config.outer_dim,
            inner_dim = config.inner_dim,
            kernel_size=config.kernel_size,
            num_output_channels=config.num_output_channels,
            pad_token_idx=5
        )
        
    def get_embeddings(self, input_ids: torch.Tensor):
        return self._model.get_embeddings(input_ids)

    def forward(self, input_ids: torch.Tensor):
        output_tensor = self._model(input_ids)

        results = defaultdict(dict)

        for i, cell_type in enumerate(["A549", "HepG2", "K562", "SK-N-SH", "HCT116"]):
            for j, allele in enumerate("ACGT"):
                results[cell_type][allele] = output_tensor[:, :, i, j]

        return results