Tool Information

Define the tools and their functionalities as a list of dictionaries.

tools_info = [
  {
    "name": "cancel_reservation",
    "description": "cancel a reservation",
    "parameters": {
      "type": "object",
      "properties": {
        "reservation_number": {
          "type": "integer",
          "description": "Reservation number"
        }
      },
      "required": ["reservation_number"]
    }
  },
  {
    "name": "get_reservations",
    "description": "get reservation numbers",
    "parameters": {
      "type": "object",
      "properties": {
        "user_id": {
          "type": "integer",
          "description": "User id"
        }
      },
      "required": [
        "user_id"
      ]
    }
  },
]

System Initialization

Initialize the system's interactive capabilities using the defined tools.

system = f"You are a helpful assistant with access to the following functions: \n {json.dumps(tools_info, indent=2)}."

Conversation Flow

Simulate a conversation flow where the user requests to cancel a reservation.

messages = [
    {"role": "system", "content": system},
    {"role": "user", "content": "Help me to cancel a reservation"},
    {"role": "assistant", "content": "I can help with that. Could you please provide me with the reservation number?"},
    {"role": "user", "content": "the reservation number is 1011"}
]

Or the user requests to display its reservations, note the use of "tool" role.

messages=[
    {"role":"system","content": system},
    {"role": "user","content": "Help me to find my reservations, my user id is 110"},
    {"role": "assistant","content":'<func_call> {"name": "get_reservations", "arguments": {"user_id": 110}}'},
    {"role": "tool","content":'["AB001","CD002","GG100"]'}
]

Model Loading

Load the causal language model and tokenizer.

model_id = "caldana/function_calling_llama3_8b_instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)

Generating Response

Generate a response from the model based on the conversation context.

input_ids = tokenizer.apply_chat_template(
    messages,
    add_generation_prompt=True,
    return_tensors="pt"
).to(model.device)

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("")
]

outputs = model.generate(
    input_ids,
    max_new_tokens=256,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.6,
    top_p=0.9,
)

response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train caldana/function_calling_llama3_8b_instruct