|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: ai4bharat/indic-bert |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: indic-bert-abusive-comments-ta |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# indic-bert-abusive-comments-ta |
|
|
|
This model is a fine-tuned version of [ai4bharat/indic-bert](https://huggingface.co/ai4bharat/indic-bert) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1108 |
|
- Accuracy: 0.6896 |
|
- Precision: 0.2983 |
|
- Recall: 0.2872 |
|
- F1: 0.2740 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 1.1508 | 1.0 | 93 | 1.2143 | 0.6216 | 0.1373 | 0.1440 | 0.1253 | |
|
| 1.1999 | 2.0 | 186 | 1.1389 | 0.6337 | 0.1632 | 0.1656 | 0.1545 | |
|
| 1.0445 | 3.0 | 279 | 1.0623 | 0.6815 | 0.2057 | 0.2219 | 0.2109 | |
|
| 0.882 | 4.0 | 372 | 1.0181 | 0.6996 | 0.3264 | 0.3092 | 0.2976 | |
|
| 0.7892 | 5.0 | 465 | 1.0408 | 0.7036 | 0.3327 | 0.3097 | 0.3011 | |
|
| 0.7381 | 6.0 | 558 | 1.1007 | 0.7103 | 0.3317 | 0.3060 | 0.3057 | |
|
| 0.6175 | 7.0 | 651 | 1.2323 | 0.7070 | 0.3241 | 0.3014 | 0.3037 | |
|
| 0.49 | 8.0 | 744 | 1.2686 | 0.6956 | 0.4590 | 0.3093 | 0.3164 | |
|
| 0.4576 | 9.0 | 837 | 1.3347 | 0.6761 | 0.3285 | 0.3200 | 0.3199 | |
|
| 0.3436 | 10.0 | 930 | 1.3501 | 0.6673 | 0.3363 | 0.3167 | 0.3204 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.1 |
|
- Pytorch 2.4.0 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.0 |
|
|