indic-sentence-bert-nli-roman-urdu-binary

This model is a fine-tuned version of l3cube-pune/indic-sentence-bert-nli on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2789
  • Accuracy: 0.9061
  • Precision: 0.9058
  • Recall: 0.9055
  • F1: 0.9057

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.4984 0.9912 56 0.4611 0.8452 0.8486 0.8489 0.8452
0.3582 2.0 113 0.3373 0.8826 0.8843 0.8802 0.8816
0.2724 2.9912 169 0.2869 0.8901 0.8894 0.8901 0.8897
0.2093 4.0 226 0.2754 0.8926 0.8922 0.8920 0.8921
0.1622 4.9912 282 0.2980 0.8989 0.9016 0.8961 0.8978
0.1235 6.0 339 0.3167 0.8889 0.8883 0.8884 0.8884
0.1125 6.9912 395 0.3369 0.8939 0.8973 0.8907 0.8926
0.0811 8.0 452 0.3535 0.8914 0.8906 0.8918 0.8911
0.0797 8.9912 508 0.3833 0.8914 0.8919 0.8898 0.8906
0.0585 9.9115 560 0.3809 0.8926 0.8924 0.8918 0.8920

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
10
Safetensors
Model size
238M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for callmesan/indic-sentence-bert-nli-roman-urdu-binary

Finetuned
(6)
this model