Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

language: en

tags:

  • sentence-embeddings
  • sentence-similarity

cambridgeltl/mirror-bert-base-uncased-sentence-drophead

An unsupervised sentence encoder proposed by Liu et al. (2021), using drophead instead of dropout as feature space augmentation. Trained with unlabelled raw sentences, using bert-base-uncased as the base model. Please use mean-pooling over all tokens as the representation of the input.

Note the model does not replicate the exact numbers in the paper since the reported numbers in the paper are average of three runs.

Citation

@inproceedings{
    liu2021fast,
  title={Fast, Effective, and Self-Supervised: Transforming Masked Language Models into Universal Lexical and Sentence Encoders},
  author={Liu, Fangyu and Vuli{\'c}, Ivan and Korhonen, Anna and Collier, Nigel},
  booktitle={EMNLP 2021},
  year={2021}
}
Downloads last month
5
Safetensors
Model size
109M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.