metadata
language:
- he
license: apache-2.0
base_model: openai/whisper-base
tags:
- hf-asr-leaderboard
- generated_from_trainer
metrics:
- wer
model-index:
- name: he-cantillation
results: []
he-cantillation
This model is a fine-tuned version of openai/whisper-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2018
- Wer: 13.4397
- Avg Precision Exact: 0.8729
- Avg Recall Exact: 0.8750
- Avg F1 Exact: 0.8735
- Avg Precision Letter Shift: 0.8927
- Avg Recall Letter Shift: 0.8951
- Avg F1 Letter Shift: 0.8935
- Avg Precision Word Level: 0.8956
- Avg Recall Word Level: 0.8980
- Avg F1 Word Level: 0.8964
- Avg Precision Word Shift: 0.9607
- Avg Recall Word Shift: 0.9633
- Avg F1 Word Shift: 0.9615
- Precision Median Exact: 0.9375
- Recall Median Exact: 1.0
- F1 Median Exact: 0.9565
- Precision Max Exact: 1.0
- Recall Max Exact: 1.0
- F1 Max Exact: 1.0
- Precision Min Exact: 0.0
- Recall Min Exact: 0.0
- F1 Min Exact: 0.0
- Precision Min Letter Shift: 0.0
- Recall Min Letter Shift: 0.0
- F1 Min Letter Shift: 0.0
- Precision Min Word Level: 0.0
- Recall Min Word Level: 0.0
- F1 Min Word Level: 0.0
- Precision Min Word Shift: 0.1429
- Recall Min Word Shift: 0.125
- F1 Min Word Shift: 0.1333
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 300000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Avg Precision Exact | Avg Recall Exact | Avg F1 Exact | Avg Precision Letter Shift | Avg Recall Letter Shift | Avg F1 Letter Shift | Avg Precision Word Level | Avg Recall Word Level | Avg F1 Word Level | Avg Precision Word Shift | Avg Recall Word Shift | Avg F1 Word Shift | Precision Median Exact | Recall Median Exact | F1 Median Exact | Precision Max Exact | Recall Max Exact | F1 Max Exact | Precision Min Exact | Recall Min Exact | F1 Min Exact | Precision Min Letter Shift | Recall Min Letter Shift | F1 Min Letter Shift | Precision Min Word Level | Recall Min Word Level | F1 Min Word Level | Precision Min Word Shift | Recall Min Word Shift | F1 Min Word Shift |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 0.0001 | 1 | 9.3041 | 101.5608 | 0.0004 | 0.0014 | 0.0006 | 0.0097 | 0.0097 | 0.0095 | 0.0046 | 0.0245 | 0.0076 | 0.0745 | 0.0770 | 0.0745 | 0.0 | 0.0 | 0.0 | 0.125 | 0.5 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.0912 | 0.5167 | 10000 | 0.1643 | 24.2519 | 0.7744 | 0.7794 | 0.7763 | 0.8031 | 0.8084 | 0.8050 | 0.8086 | 0.8139 | 0.8105 | 0.9118 | 0.9194 | 0.9147 | 0.8667 | 0.875 | 0.875 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
0.031 | 1.0334 | 20000 | 0.1517 | 19.9125 | 0.8108 | 0.8070 | 0.8082 | 0.8351 | 0.8312 | 0.8325 | 0.8397 | 0.8368 | 0.8376 | 0.9358 | 0.9337 | 0.9339 | 0.9091 | 0.9091 | 0.9091 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0833 | 0.1111 | 0.1 |
0.0202 | 1.5501 | 30000 | 0.1538 | 19.0346 | 0.8207 | 0.8188 | 0.8191 | 0.8440 | 0.8422 | 0.8425 | 0.8484 | 0.8461 | 0.8466 | 0.9362 | 0.9355 | 0.9350 | 0.9167 | 0.9091 | 0.9091 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0833 | 0.0909 |
0.0092 | 2.0668 | 40000 | 0.1561 | 17.4297 | 0.8346 | 0.8349 | 0.8342 | 0.8570 | 0.8575 | 0.8567 | 0.8610 | 0.8615 | 0.8607 | 0.9425 | 0.9438 | 0.9424 | 0.9167 | 0.9231 | 0.9231 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1111 | 0.1667 | 0.1429 |
0.0087 | 2.5834 | 50000 | 0.1619 | 16.5864 | 0.8456 | 0.8472 | 0.8459 | 0.8688 | 0.8706 | 0.8692 | 0.8728 | 0.8746 | 0.8732 | 0.9476 | 0.9502 | 0.9482 | 0.9231 | 0.9231 | 0.9231 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.0204 | 3.1001 | 60000 | 0.1678 | 16.4165 | 0.8450 | 0.8476 | 0.8458 | 0.8670 | 0.8697 | 0.8678 | 0.8704 | 0.8731 | 0.8712 | 0.9463 | 0.9505 | 0.9478 | 0.9231 | 0.9231 | 0.9231 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0769 | 0.0714 | 0.0741 |
0.01 | 3.6168 | 70000 | 0.1698 | 16.5707 | 0.8442 | 0.8487 | 0.8460 | 0.8658 | 0.8706 | 0.8676 | 0.8693 | 0.8741 | 0.8712 | 0.9425 | 0.9481 | 0.9446 | 0.9231 | 0.9231 | 0.9286 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
0.0028 | 4.1335 | 80000 | 0.1773 | 15.8249 | 0.8503 | 0.8547 | 0.8520 | 0.8716 | 0.8762 | 0.8734 | 0.8750 | 0.8798 | 0.8769 | 0.9475 | 0.9535 | 0.9498 | 0.9231 | 0.9286 | 0.9286 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.0909 | 0.1176 |
0.0027 | 4.6502 | 90000 | 0.1759 | 16.0137 | 0.8473 | 0.8495 | 0.8479 | 0.8687 | 0.8711 | 0.8694 | 0.8728 | 0.8753 | 0.8735 | 0.9477 | 0.9516 | 0.9491 | 0.9231 | 0.9231 | 0.9286 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0769 | 0.0714 | 0.0741 |
0.0027 | 5.1669 | 100000 | 0.1789 | 15.5543 | 0.8518 | 0.8527 | 0.8517 | 0.8725 | 0.8739 | 0.8727 | 0.8765 | 0.8774 | 0.8764 | 0.9514 | 0.9529 | 0.9515 | 0.9286 | 0.9286 | 0.9333 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
0.0031 | 5.6836 | 110000 | 0.1830 | 15.4064 | 0.8546 | 0.8553 | 0.8545 | 0.8758 | 0.8766 | 0.8757 | 0.8797 | 0.8804 | 0.8795 | 0.9528 | 0.9537 | 0.9527 | 0.9286 | 0.9286 | 0.9286 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
0.0008 | 6.2003 | 120000 | 0.1847 | 15.0980 | 0.8598 | 0.8610 | 0.8599 | 0.8810 | 0.8823 | 0.8812 | 0.8844 | 0.8857 | 0.8845 | 0.9538 | 0.9571 | 0.9549 | 0.9286 | 0.9286 | 0.9333 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
0.0011 | 6.7170 | 130000 | 0.1879 | 15.3151 | 0.8550 | 0.8584 | 0.8562 | 0.8758 | 0.8793 | 0.8770 | 0.8790 | 0.8825 | 0.8802 | 0.9525 | 0.9562 | 0.9537 | 0.9286 | 0.9286 | 0.9333 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0625 | 0.125 | 0.0870 |
0.0022 | 7.2336 | 140000 | 0.1953 | 15.4253 | 0.8545 | 0.8597 | 0.8566 | 0.8768 | 0.8823 | 0.8790 | 0.8801 | 0.8856 | 0.8823 | 0.9511 | 0.9562 | 0.9530 | 0.9231 | 0.9286 | 0.9286 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
0.0005 | 7.7503 | 150000 | 0.1929 | 15.0791 | 0.8608 | 0.8615 | 0.8607 | 0.8813 | 0.8823 | 0.8813 | 0.8849 | 0.8859 | 0.8849 | 0.9546 | 0.9564 | 0.9549 | 0.9286 | 0.9286 | 0.9333 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
0.0011 | 8.2670 | 160000 | 0.1946 | 15.0036 | 0.8579 | 0.8609 | 0.8589 | 0.8792 | 0.8824 | 0.8803 | 0.8827 | 0.8858 | 0.8838 | 0.9553 | 0.9597 | 0.9569 | 0.9286 | 0.9333 | 0.9412 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
0.0014 | 8.7837 | 170000 | 0.1922 | 14.6732 | 0.8618 | 0.8625 | 0.8616 | 0.8827 | 0.8836 | 0.8826 | 0.8862 | 0.8871 | 0.8861 | 0.9560 | 0.9582 | 0.9565 | 0.9333 | 0.9333 | 0.9474 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2222 | 0.1667 | 0.1905 |
0.0003 | 9.3004 | 180000 | 0.1957 | 14.5505 | 0.8620 | 0.8657 | 0.8634 | 0.8824 | 0.8863 | 0.8839 | 0.8858 | 0.8896 | 0.8872 | 0.9546 | 0.9586 | 0.9560 | 0.9286 | 0.9333 | 0.9474 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
0.0005 | 9.8171 | 190000 | 0.1965 | 14.7928 | 0.8615 | 0.8637 | 0.8622 | 0.8828 | 0.8853 | 0.8836 | 0.8858 | 0.8883 | 0.8866 | 0.9539 | 0.9578 | 0.9552 | 0.9286 | 0.9333 | 0.9412 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1111 | 0.125 | 0.125 |
0.0007 | 10.3338 | 200000 | 0.1991 | 14.3208 | 0.8643 | 0.8655 | 0.8644 | 0.8854 | 0.8868 | 0.8856 | 0.8884 | 0.8899 | 0.8887 | 0.9576 | 0.9600 | 0.9582 | 0.9333 | 0.9333 | 0.9474 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
0.0001 | 10.8505 | 210000 | 0.1999 | 14.4466 | 0.8598 | 0.8636 | 0.8612 | 0.8801 | 0.8841 | 0.8816 | 0.8836 | 0.8876 | 0.8851 | 0.9553 | 0.9597 | 0.9569 | 0.9286 | 0.9333 | 0.9474 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
0.0001 | 11.3672 | 220000 | 0.2056 | 14.8148 | 0.8566 | 0.8592 | 0.8574 | 0.8777 | 0.8805 | 0.8786 | 0.8810 | 0.8841 | 0.8821 | 0.9523 | 0.9577 | 0.9544 | 0.9286 | 0.9286 | 0.9333 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
0.0013 | 11.8838 | 230000 | 0.1986 | 13.9054 | 0.8690 | 0.8695 | 0.8688 | 0.8891 | 0.8896 | 0.8889 | 0.8921 | 0.8928 | 0.8920 | 0.9580 | 0.9599 | 0.9584 | 0.9333 | 0.9333 | 0.9524 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
0.0 | 12.4005 | 240000 | 0.1983 | 13.7670 | 0.8722 | 0.8725 | 0.8719 | 0.8918 | 0.8922 | 0.8916 | 0.8949 | 0.8954 | 0.8947 | 0.9604 | 0.9616 | 0.9604 | 0.9375 | 0.9412 | 0.9565 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
0.0 | 12.9172 | 250000 | 0.1994 | 13.9274 | 0.8673 | 0.8693 | 0.8679 | 0.8865 | 0.8887 | 0.8872 | 0.8898 | 0.8920 | 0.8904 | 0.9583 | 0.9612 | 0.9592 | 0.9333 | 0.9412 | 0.9565 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
0.0 | 13.4339 | 260000 | 0.2031 | 13.8771 | 0.8669 | 0.8688 | 0.8674 | 0.8864 | 0.8884 | 0.8869 | 0.8894 | 0.8914 | 0.8899 | 0.9582 | 0.9609 | 0.9590 | 0.9333 | 0.9412 | 0.9524 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
0.0 | 13.9506 | 270000 | 0.2013 | 13.7323 | 0.8723 | 0.8727 | 0.8721 | 0.8921 | 0.8926 | 0.8919 | 0.8951 | 0.8959 | 0.8950 | 0.9594 | 0.9612 | 0.9598 | 0.9375 | 0.9375 | 0.9565 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
0.0 | 14.4673 | 280000 | 0.2016 | 13.5247 | 0.8713 | 0.8733 | 0.8719 | 0.8910 | 0.8933 | 0.8917 | 0.8940 | 0.8962 | 0.8947 | 0.9604 | 0.9628 | 0.9611 | 0.9375 | 1.0 | 0.9565 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
0.0 | 14.9840 | 290000 | 0.2016 | 13.4837 | 0.8731 | 0.8751 | 0.8737 | 0.8930 | 0.8951 | 0.8936 | 0.8957 | 0.8979 | 0.8964 | 0.9602 | 0.9628 | 0.9609 | 0.9375 | 1.0 | 0.9565 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
0.0 | 15.5007 | 300000 | 0.2018 | 13.4397 | 0.8729 | 0.8750 | 0.8735 | 0.8927 | 0.8951 | 0.8935 | 0.8956 | 0.8980 | 0.8964 | 0.9607 | 0.9633 | 0.9615 | 0.9375 | 1.0 | 0.9565 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.2.1
- Datasets 2.20.0
- Tokenizers 0.19.1