cantillation's picture
End of training
d09b477 verified
metadata
language:
  - he
base_model: cantillation/Teamim-large-v2_Random-True_OldData_date-07-06-2024_16-07-57
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: he-cantillation
    results: []

he-cantillation

This model is a fine-tuned version of cantillation/Teamim-large-v2_Random-True_OldData_date-07-06-2024_16-07-57 on an unknown dataset. It achieves the following results on the evaluation set:

  • eval_loss: 0.0899
  • eval_wer: 9.8928
  • eval_avg_precision_Exact: 0.9232
  • eval_avg_recall_Exact: 0.9228
  • eval_avg_f1_Exact: 0.9227
  • eval_avg_precision_Letter_Shift: 0.9383
  • eval_avg_recall_Letter_Shift: 0.9381
  • eval_avg_f1_Letter_Shift: 0.9379
  • eval_avg_precision_Word_Level: 0.9405
  • eval_avg_recall_Word_Level: 0.9404
  • eval_avg_f1_Word_Level: 0.9401
  • eval_avg_precision_Word_Shift: 0.9772
  • eval_avg_recall_Word_Shift: 0.9777
  • eval_avg_f1_Word_Shift: 0.9771
  • eval_precision_median_exact: 1.0
  • eval_recall_median_exact: 1.0
  • eval_f1_median_exact: 1.0
  • eval_precision_max_exact: 1.0
  • eval_recall_max_exact: 1.0
  • eval_f1_max_exact: 1.0
  • eval_precision_min_Exact: 0.0
  • eval_recall_min_Exact: 0.0
  • eval_f1_min_Exact: 0.0
  • eval_precision_min_Letter_Shift: 0.0
  • eval_recall_min_Letter_Shift: 0.0
  • eval_f1_min_Letter_Shift: 0.0
  • eval_precision_min_Word_Level: 0.0
  • eval_recall_min_Word_Level: 0.0
  • eval_f1_min_Word_Level: 0.0
  • eval_precision_min_Word_Shift: 0.1429
  • eval_recall_min_Word_Shift: 0.1
  • eval_f1_min_Word_Shift: 0.1176
  • eval_runtime: 2336.8917
  • eval_samples_per_second: 1.152
  • eval_steps_per_second: 0.036
  • epoch: 0.56
  • step: 7000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.16.1
  • Tokenizers 0.19.1