metadata
language:
- he
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- hf-asr-leaderboard
- generated_from_trainer
metrics:
- wer
model-index:
- name: he-cantillation
results: []
he-cantillation
This model is a fine-tuned version of openai/whisper-tiny on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 8.5391
- Wer: 100.0
- Avg Precision Exact: 0.0025
- Avg Recall Exact: 0.0108
- Avg F1 Exact: 0.0040
- Avg Precision Letter Shift: 0.0838
- Avg Recall Letter Shift: 0.0277
- Avg F1 Letter Shift: 0.0417
- Avg Precision Word Level: 0.0118
- Avg Recall Word Level: 0.0511
- Avg F1 Word Level: 0.0190
- Avg Precision Word Shift: 0.1441
- Avg Recall Word Shift: 0.0917
- Avg F1 Word Shift: 0.1042
- Precision Median Exact: 0.0
- Recall Median Exact: 0.0
- F1 Median Exact: 0.0
- Precision Max Exact: 0.0769
- Recall Max Exact: 0.3333
- F1 Max Exact: 0.125
- Precision Min Exact: 0.0
- Recall Min Exact: 0.0
- F1 Min Exact: 0.0
- Precision Min Letter Shift: 0.0
- Recall Min Letter Shift: 0.0
- F1 Min Letter Shift: 0.0
- Precision Min Word Level: 0.0
- Recall Min Word Level: 0.0
- F1 Min Word Level: 0.0
- Precision Min Word Shift: 0.0
- Recall Min Word Shift: 0.0
- F1 Min Word Shift: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- training_steps: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Avg Precision Exact | Avg Recall Exact | Avg F1 Exact | Avg Precision Letter Shift | Avg Recall Letter Shift | Avg F1 Letter Shift | Avg Precision Word Level | Avg Recall Word Level | Avg F1 Word Level | Avg Precision Word Shift | Avg Recall Word Shift | Avg F1 Word Shift | Precision Median Exact | Recall Median Exact | F1 Median Exact | Precision Max Exact | Recall Max Exact | F1 Max Exact | Precision Min Exact | Recall Min Exact | F1 Min Exact | Precision Min Letter Shift | Recall Min Letter Shift | F1 Min Letter Shift | Precision Min Word Level | Recall Min Word Level | F1 Min Word Level | Precision Min Word Shift | Recall Min Word Shift | F1 Min Word Shift |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 0.0040 | 1 | 8.5391 | 100.0 | 0.0025 | 0.0108 | 0.0040 | 0.0838 | 0.0277 | 0.0417 | 0.0118 | 0.0511 | 0.0190 | 0.1441 | 0.0917 | 0.1042 | 0.0 | 0.0 | 0.0 | 0.0769 | 0.3333 | 0.125 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
No log | 0.0202 | 5 | 8.5391 | 100.0 | 0.0025 | 0.0108 | 0.0040 | 0.0838 | 0.0277 | 0.0417 | 0.0118 | 0.0511 | 0.0190 | 0.1441 | 0.0917 | 0.1042 | 0.0 | 0.0 | 0.0 | 0.0769 | 0.3333 | 0.125 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.2.1
- Datasets 2.20.0
- Tokenizers 0.19.1