he

This model is a fine-tuned version of openai/whisper-medium on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3168
  • Precision: 0.1010
  • Recall: 0.1098
  • F1: 0.1051
  • Precision Median: 0.0
  • Recall Median: 0.0
  • F1 Median: 0.0
  • Precision Max: 0.5
  • Recall Max: 0.5333
  • F1 Max: 0.5161
  • Precision Min: 0.0
  • Recall Min: 0.0
  • F1 Min: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 800
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Precision Median Recall Median F1 Median Precision Max Recall Max F1 Max Precision Min Recall Min F1 Min
3.5705 0.32 200 2.7306 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0
2.0183 0.63 400 1.6209 0.0341 0.0373 0.0356 0.0 0.0 0.0 0.4375 0.4667 0.4516 0.0 0.0 0.0
1.6646 0.95 600 1.3710 0.1062 0.1151 0.1103 0.0 0.0 0.0 0.5 0.5333 0.5161 0.0 0.0 0.0
1.6004 1.27 800 1.3168 0.1010 0.1098 0.1051 0.0 0.0 0.0 0.5 0.5333 0.5161 0.0 0.0 0.0

Framework versions

  • Transformers 4.36.2
  • Pytorch 1.13.1+cu117
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
8
Safetensors
Model size
37.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for cantillation/whisper-medium-he-teamim-aviv-bavly-without-nikud-test

Finetuned
(551)
this model