metadata
datasets:
- cardiffnlp/tweet_topic_multi
metrics:
- f1
- accuracy
model-index:
- name: cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-multi-2020
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: cardiffnlp/tweet_topic_multi
type: cardiffnlp/tweet_topic_multi
args: cardiffnlp/tweet_topic_multi
split: test_2021
metrics:
- name: F1
type: f1
value: 0.7367104440275171
- name: F1 (macro)
type: f1_macro
value: 0.5656244617373364
- name: Accuracy
type: accuracy
value: 0.5134008338296605
pipeline_tag: text-classification
widget:
- text: >-
I'm sure the {@Tampa Bay Lightning@} would’ve rather faced the Flyers but
man does their experience versus the Blue Jackets this year and last help
them a lot versus this Islanders team. Another meat grinder upcoming for
the good guys
example_title: Example 1
- text: >-
Love to take night time bike rides at the jersey shore. Seaside Heights
boardwalk. Beautiful weather. Wishing everyone a safe Labor Day weekend in
the US.
example_title: Example 2
cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-multi-2020
This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-2019-90m on the tweet_topic_multi. This model is fine-tuned on train_2020
split and validated on test_2021
split of tweet_topic.
Fine-tuning script can be found here. It achieves the following results on the test_2021 set:
- F1 (micro): 0.7367104440275171
- F1 (macro): 0.5656244617373364
- Accuracy: 0.5134008338296605
Usage
import math
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
def sigmoid(x):
return 1 / (1 + math.exp(-x))
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-multi-2020")
model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-multi-2020", problem_type="multi_label_classification")
model.eval()
class_mapping = model.config.id2label
with torch.no_grad():
text = #NewVideo Cray Dollas- Water- Ft. Charlie Rose- (Official Music Video)- {{URL}} via {@YouTube@} #watchandlearn {{USERNAME}}
tokens = tokenizer(text, return_tensors='pt')
output = model(**tokens)
flags = [sigmoid(s) > 0.5 for s in output[0][0].detach().tolist()]
topic = [class_mapping[n] for n, i in enumerate(flags) if i]
print(topic)
Reference
@inproceedings{dimosthenis-etal-2022-twitter,
title = "{T}witter {T}opic {C}lassification",
author = "Antypas, Dimosthenis and
Ushio, Asahi and
Camacho-Collados, Jose and
Neves, Leonardo and
Silva, Vitor and
Barbieri, Francesco",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics"
}