Edit model card

twitter-roberta-base-emotion-multilabel-latest

This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-2022-154m on the SemEval 2018 - Task 1 Affect in Tweets (subtask: E-c / multilabel classification).

Performance

Following metrics are achieved on the test split:

  • F1 (micro): 0.7169
  • F1 (macro): 0.5464
  • Jaccard Index (samples): 0.5970:

Usage

1. tweetnlp

Install tweetnlp via pip.

pip install tweetnlp

Load the model in python.

import tweetnlp

model = tweetnlp.load_model('topic_classification', model_name='cardiffnlp/twitter-roberta-base-emotion-multilabel-latest')

model.predict("I bet everything will work out in the end :)")

>> {'label': ['joy', 'optimism']}

2. pipeline

pip install -U tensorflow==2.10
from transformers import pipeline

pipe = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-emotion-multilabel-latest", return_all_scores=True)

pipe("I bet everything will work out in the end :)")

>> [[{'label': 'anger', 'score': 0.018903767690062523},
  {'label': 'anticipation', 'score': 0.28172484040260315},
  {'label': 'disgust', 'score': 0.011607927270233631},
  {'label': 'fear', 'score': 0.036411102861166},
  {'label': 'joy', 'score': 0.8812029361724854},
  {'label': 'love', 'score': 0.09591569006443024},
  {'label': 'optimism', 'score': 0.9810988306999207},
  {'label': 'pessimism', 'score': 0.016823478043079376},
  {'label': 'sadness', 'score': 0.01889917254447937},
  {'label': 'surprise', 'score': 0.02702752873301506},
  {'label': 'trust', 'score': 0.4155798852443695}]]

Reference

@inproceedings{camacho-collados-etal-2022-tweetnlp,
    title={{T}weet{NLP}: {C}utting-{E}dge {N}atural {L}anguage {P}rocessing for {S}ocial {M}edia},
    author={Camacho-Collados, Jose and Rezaee, Kiamehr and Riahi, Talayeh and Ushio, Asahi and Loureiro, Daniel and Antypas, Dimosthenis and Boisson, Joanne and Espinosa-Anke, Luis and Liu, Fangyu and Mart{\'\i}nez-C{\'a}mara, Eugenio and others},
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
    month = nov,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}
Downloads last month
4,367
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using cardiffnlp/twitter-roberta-base-emotion-multilabel-latest 2

Collection including cardiffnlp/twitter-roberta-base-emotion-multilabel-latest