Edit model card

cardiffnlp/xlm-roberta-base-sentiment-multilingual

This model is a fine-tuned version of xlm-roberta-base on the cardiffnlp/tweet_sentiment_multilingual (all) via tweetnlp. Training split is train and parameters have been tuned on the validation split validation.

Following metrics are achieved on the test split test (link).

  • F1 (micro): 0.665948275862069
  • F1 (macro): 0.6628627126803655
  • Accuracy: 0.665948275862069

Usage

Install tweetnlp via pip.

pip install tweetnlp

Load the model in python.

import tweetnlp
model = tweetnlp.Classifier("cardiffnlp/xlm-roberta-base-sentiment-multilingual", max_length=128)
model.predict('Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}}')

Reference

@inproceedings{dimosthenis-etal-2022-twitter,
    title = "{T}witter {T}opic {C}lassification",
    author = "Antypas, Dimosthenis  and
    Ushio, Asahi  and
    Camacho-Collados, Jose  and
    Neves, Leonardo  and
    Silva, Vitor  and
    Barbieri, Francesco",
    booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
    month = oct,
    year = "2022",
    address = "Gyeongju, Republic of Korea",
    publisher = "International Committee on Computational Linguistics"
}
Downloads last month
66
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train cardiffnlp/xlm-roberta-base-sentiment-multilingual

Space using cardiffnlp/xlm-roberta-base-sentiment-multilingual 1

Evaluation results

  • Micro F1 (cardiffnlp/tweet_sentiment_multilingual/all) on cardiffnlp/tweet_sentiment_multilingual
    test set self-reported
    0.666
  • Macro F1 (cardiffnlp/tweet_sentiment_multilingual/all) on cardiffnlp/tweet_sentiment_multilingual
    test set self-reported
    0.663
  • Accuracy (cardiffnlp/tweet_sentiment_multilingual/all) on cardiffnlp/tweet_sentiment_multilingual
    test set self-reported
    0.666