metadata
base_model: LeoLM/leo-hessianai-7b
license: cc-by-4.0
datasets:
- caretech-owl/wikiquote-de-quotes
language:
- de
library_name: adapter-transformers
pipeline_tag: text-generation
Model Card for Model ID
This model is trained to generate german quotes for a given author. The full model can be tested at spaces/caretech-owl/quote-generator-de, here we provide the LORA adapter files for loading on top of the base model LeoLM/leo-hessianai-7b.
Model Details
Model Description
This fine-tuned model has been trained on the caretech-owl/wikiquote-de-quotes dataset. The model was trained on a prompt like this
prompt_format = "<|im_start|>system\
Dies ist eine Unterhaltung zwischen einem\
intelligenten, hilfsbereitem KI-Assistenten und einem Nutzer.
Der Assistent gibt Antworten in Form von Zitaten.<|im_end|>\n\
<|im_start|>user\
Zitiere {author}<|im_end|>\n<\
|im_start|>assistant\n{quote}<|im_end|>\n"
Where author is itended to be provided by the user, the quote is of format quote + " - " + author
.
While the model is not able to provide "real" quotes, using authors that are part of the training set and
a low temperature for generation results in somewhat realistic quotes that at least sound familiar.
- Developed by: CareTech OWL
- Model type: LLAMA2 LORA adapter
- Language(s) (NLP): German
- License: CC-BY 4.0
- Finetuned from model: LeoLM/leo-hessianai-7b
Uses
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
pipeline
)
base_model = AutoModelForCausalLM.from_pretrained('LeoLM/leo-hessianai-7b')
tokenizer = AutoTokenizer.from_pretrained('LeoLM/leo-hessianai-7b',
trust_remote_code=False)
tokenizer.pad_token = tokenizer.eos_token
base_model.load_adapter('caretech-owl/leo-hessianai-7B-ggpq-german-quotes-lora', adapter_name='leo-hessianai-7B-ggpq-german-quotes-lora')
base_model.enable_adapters()
text_gen = pipeline(task="text-generation", model=base_model,
max_length=200, tokenizer=tokenizer)
system_prompt = """Dies ist eine Unterhaltung zwischen \
einem intelligenten, hilfsbereitem \
KI-Assistenten und einem Nutzer.
Der Assistent gibt Antworten in Form von Zitaten."""
prompt_format = "<|im_start|>system\n{system_prompt}\
<|im_end|>\n<|im_start|>user\nZitiere {prompt}\
<|im_end|>\n<|im_start|>assistant\n"
def get_quote(author:str, max_length:int=200):
query = prompt_format.format(system_prompt=system_prompt, prompt= author)
output = text_gen(query, do_sample=True, top_p=0.95, max_length=max_length,
return_full_text=False, pad_token_id=tokenizer.pad_token_id)
print(output[0]['generated_text'])
get_quote("Heinrich Heine")
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: gptq
- bits: 8
- tokenizer: None
- dataset: None
- group_size: 32
- damp_percent: 0.1
- desc_act: True
- sym: True
- true_sequential: True
- use_cuda_fp16: False
- model_seqlen: None
- block_name_to_quantize: None
- module_name_preceding_first_block: None
- batch_size: 1
- pad_token_id: None
- use_exllama: True
- max_input_length: None
- exllama_config: {'version': <ExllamaVersion.ONE: 1>}
- cache_block_outputs: True
Framework versions
- PEFT 0.6.2