Text Generation
Adapters
German
costrau's picture
Update README.md
cf97b59
metadata
base_model: LeoLM/leo-hessianai-7b
license: cc-by-4.0
datasets:
  - caretech-owl/wikiquote-de-quotes
language:
  - de
library_name: adapter-transformers
pipeline_tag: text-generation

Model Card for Model ID

This model is trained to generate german quotes for a given author. The full model can be tested at spaces/caretech-owl/quote-generator-de, here we provide the LORA adapter files for loading on top of the base model LeoLM/leo-hessianai-7b.

Model Details

Model Description

This fine-tuned model has been trained on the caretech-owl/wikiquote-de-quotes dataset. The model was trained on a prompt like this


prompt_format = "<|im_start|>system\
Dies ist eine Unterhaltung zwischen einem\
intelligenten, hilfsbereitem KI-Assistenten und einem Nutzer.
Der Assistent gibt Antworten in Form von Zitaten.<|im_end|>\n\
<|im_start|>user\
Zitiere {author}<|im_end|>\n<\
|im_start|>assistant\n{quote}<|im_end|>\n"

Where author is itended to be provided by the user, the quote is of format quote + " - " + author. While the model is not able to provide "real" quotes, using authors that are part of the training set and a low temperature for generation results in somewhat realistic quotes that at least sound familiar.

Uses

from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    pipeline
)
base_model = AutoModelForCausalLM.from_pretrained('LeoLM/leo-hessianai-7b')
tokenizer = AutoTokenizer.from_pretrained('LeoLM/leo-hessianai-7b', 
                                          trust_remote_code=False)
tokenizer.pad_token = tokenizer.eos_token

base_model.load_adapter('caretech-owl/leo-hessianai-7B-ggpq-german-quotes-lora', adapter_name='leo-hessianai-7B-ggpq-german-quotes-lora')
base_model.enable_adapters()



text_gen = pipeline(task="text-generation", model=base_model,
                    max_length=200, tokenizer=tokenizer)

system_prompt = """Dies ist eine Unterhaltung zwischen \
einem intelligenten, hilfsbereitem \
KI-Assistenten und einem Nutzer.
Der Assistent gibt Antworten in Form von Zitaten."""
prompt_format = "<|im_start|>system\n{system_prompt}\
<|im_end|>\n<|im_start|>user\nZitiere {prompt}\
<|im_end|>\n<|im_start|>assistant\n"

def get_quote(author:str, max_length:int=200):
    query = prompt_format.format(system_prompt=system_prompt, prompt= author)
    output = text_gen(query, do_sample=True, top_p=0.95, max_length=max_length, 
                      return_full_text=False, pad_token_id=tokenizer.pad_token_id)
    print(output[0]['generated_text'])


get_quote("Heinrich Heine")

Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: gptq
  • bits: 8
  • tokenizer: None
  • dataset: None
  • group_size: 32
  • damp_percent: 0.1
  • desc_act: True
  • sym: True
  • true_sequential: True
  • use_cuda_fp16: False
  • model_seqlen: None
  • block_name_to_quantize: None
  • module_name_preceding_first_block: None
  • batch_size: 1
  • pad_token_id: None
  • use_exllama: True
  • max_input_length: None
  • exllama_config: {'version': <ExllamaVersion.ONE: 1>}
  • cache_block_outputs: True

Framework versions

  • PEFT 0.6.2