File size: 3,209 Bytes
70883fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
523f71d
70883fa
 
 
 
 
 
 
 
 
523f71d
 
70883fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
523f71d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70883fa
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: plant-seedlings-model-ConvNet
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9522292993630573
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# plant-seedlings-model-ConvNet

This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2410
- Accuracy: 0.9522

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.494         | 0.8   | 100  | 0.4274          | 0.8828   |
| 0.246         | 1.6   | 200  | 0.2878          | 0.8930   |
| 0.1042        | 2.4   | 300  | 0.2227          | 0.9172   |
| 0.0174        | 3.2   | 400  | 0.2208          | 0.9299   |
| 0.0088        | 4.0   | 500  | 0.3197          | 0.9185   |
| 0.0078        | 4.8   | 600  | 0.2555          | 0.9357   |
| 0.0013        | 5.6   | 700  | 0.2599          | 0.9427   |
| 0.0068        | 6.4   | 800  | 0.3072          | 0.9312   |
| 0.0007        | 7.2   | 900  | 0.2217          | 0.9484   |
| 0.0004        | 8.0   | 1000 | 0.2551          | 0.9401   |
| 0.0003        | 8.8   | 1100 | 0.2321          | 0.9478   |
| 0.0002        | 9.6   | 1200 | 0.2329          | 0.9484   |
| 0.0002        | 10.4  | 1300 | 0.2322          | 0.9478   |
| 0.0002        | 11.2  | 1400 | 0.2342          | 0.9478   |
| 0.0002        | 12.0  | 1500 | 0.2348          | 0.9490   |
| 0.0001        | 12.8  | 1600 | 0.2358          | 0.9490   |
| 0.0001        | 13.6  | 1700 | 0.2368          | 0.9497   |
| 0.0001        | 14.4  | 1800 | 0.2377          | 0.9510   |
| 0.0001        | 15.2  | 1900 | 0.2384          | 0.9516   |
| 0.0001        | 16.0  | 2000 | 0.2391          | 0.9516   |
| 0.0001        | 16.8  | 2100 | 0.2397          | 0.9522   |
| 0.0001        | 17.6  | 2200 | 0.2401          | 0.9522   |
| 0.0001        | 18.4  | 2300 | 0.2406          | 0.9522   |
| 0.0001        | 19.2  | 2400 | 0.2409          | 0.9522   |
| 0.0001        | 20.0  | 2500 | 0.2410          | 0.9522   |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3