cartesinus's picture
Librarian Bot: Add base_model information to model (#2)
f3fbe01
metadata
language:
  - en
license: mit
tags:
  - generated_from_trainer
  - nlu
  - intent-classification
datasets:
  - AmazonScience/massive
metrics:
  - accuracy
  - f1
pipeline_tag: text-classification
base_model: microsoft/mdeberta-v3-base
model-index:
  - name: mdeberta-v3-base_amazon-massive_intent
    results:
      - task:
          type: intent-classification
          name: intent-classification
        dataset:
          name: MASSIVE
          type: AmazonScience/massive
          split: test
        metrics:
          - type: f1
            value: 0.8136
            name: F1

mdeberta-v3-base_amazon-massive_intent

This model is a fine-tuned version of microsoft/mdeberta-v3-base on the MASSIVE1.1 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1661
  • Accuracy: 0.8136
  • F1: 0.8136

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
3.6412 1.0 720 2.7536 0.3123 0.3123
2.8575 2.0 1440 1.8556 0.5303 0.5303
1.7284 3.0 2160 1.3758 0.6699 0.6699
1.3794 4.0 2880 1.1221 0.7236 0.7236
0.942 5.0 3600 0.9936 0.7609 0.7609
0.7672 6.0 4320 0.9411 0.7727 0.7727
0.602 7.0 5040 0.9196 0.7841 0.7841
0.4776 8.0 5760 0.9328 0.7895 0.7895
0.4347 9.0 6480 0.9602 0.7860 0.7860
0.2941 10.0 7200 0.9543 0.7949 0.7949
0.2783 11.0 7920 0.9979 0.8013 0.8013
0.2038 12.0 8640 0.9702 0.8062 0.8062
0.1827 13.0 9360 1.0121 0.8106 0.8106
0.1352 14.0 10080 1.0339 0.8136 0.8136
0.1115 15.0 10800 1.1091 0.8057 0.8057
0.0996 16.0 11520 1.1134 0.8151 0.8151
0.0837 17.0 12240 1.1288 0.8160 0.8160
0.0711 18.0 12960 1.1499 0.8155 0.8155
0.0594 19.0 13680 1.1622 0.8126 0.8126
0.0569 20.0 14400 1.1661 0.8136 0.8136

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.12.1+cu113
  • Datasets 2.7.1
  • Tokenizers 0.13.2