librarian-bot's picture
Librarian Bot: Add base_model information to model
c04a09a
|
raw
history blame
1.83 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - recall
  - precision
base_model: distilbert-base-uncased
model-index:
  - name: distilbert-base-uncased_finetuned_text_2_disease_cel
    results: []

distilbert-base-uncased_finetuned_text_2_disease_cel

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2732
  • Accuracy: 0.9865
  • F1: 0.9864
  • Recall: 0.9865
  • Precision: 0.9879

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Recall Precision
1.3868 1.0 167 1.1692 0.8649 0.8458 0.8649 0.8573
0.5345 2.0 334 0.4214 0.9745 0.9736 0.9745 0.9769
0.3472 3.0 501 0.2732 0.9865 0.9864 0.9865 0.9879

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2