metadata
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3853
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: |-
"BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS" <
"BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS"
sentences:
- >-
What is the primary concept that the Discovery Server mechanism uses
from the RTPS protocol?
- >-
What is the default state of the Verbosity Level component in the
logging module?
- >-
What is the consequence of having a DataWriter kind that is lower than
the DataReader kind in terms of DestinationOrderQosPolicy?
- source_sentence: >-
+-----------------------------------------+-------------------------+--------------------------------------------------------+
| Data Member Name | Type |
Default Value |
|=========================================|=========================|========================================================|
| "kind" | DurabilityQosPolicyKind |
"VOLATILE_DURABILITY_QOS" for DataReaders |
| | |
"TRANSIENT_LOCAL_DURABILITY_QOS" for DataWriters |
+-----------------------------------------+-------------------------+--------------------------------------------------------+
sentences:
- >-
What is the default value of the "kind" data member for a DataReader in
the DurabilityQoSPolicy?
- >-
What is the main concept of the SQL-like filter syntax used in
ContentFilteredTopic API?
- >-
What is the purpose of the "<shared_dir>" value in the QoS
configuration?
- source_sentence: |2-
git clone https://github.com/eProsima/Fast-DDS.git && cd Fast-DDS
WORKSPACE=$PWD
sentences:
- >-
What is the primary function of the ThreadSettings parameter in the
context of Fast DDS thread creation?
- >-
What is the primary requirement for installing eProsima Fast DDS library
on QNX 7.1 from sources?
- >-
What's the purpose of the "max_handshake_requests" property in the
context of authentication handshake settings?
- source_sentence: |-
This QoS Policy allows the configuration of the wire protocol. See
"WireProtocolConfigQos".
sentences:
- >-
What is the primary purpose of the WireProtocolConfigQos policy in a DDS
(Data Distribution Service) system?
- >-
What determines when a DataWriter sends consecutive liveliness messages,
according to the LivelinessQosPolicy?
- >-
What is the purpose of the LivelinessQosPolicy in a DataReader's QoS
settings?
- source_sentence: |-
* "AUTOMATIC_LIVELINESS_QOS": The service takes the responsibility for
renewing the leases at the required rates, as long as the local
process where the participant is running and the link connecting it
to remote participants exists, the entities within the remote
participant will be considered alive. This kind is suitable for
applications that only need to detect whether a remote application
is still running.
sentences:
- >-
What is the primary mechanism used by the service to ensure that a
particular entity on the network remains considered "alive" when using
the LivelinessQosPolicy with the "AUTOMATIC_ LIVELINESS_ QOS" kind?
- >-
What is the purpose of creating a "DomainParticipant" in the context of
monitoring application development?
- >-
What is the purpose of loading an XML profiles file before creating
entities in Fast DDS?
pipeline_tag: sentence-similarity
model-index:
- name: Fine tuning poc1-5e
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.3333333333333333
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.49184149184149184
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5524475524475524
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6247086247086248
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3333333333333333
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.16394716394716394
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11048951048951047
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.06247086247086246
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3333333333333333
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.49184149184149184
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5524475524475524
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6247086247086248
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4719611229721751
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4239057239057238
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.43117995796594344
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.331002331002331
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.48717948717948717
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5454545454545454
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.62004662004662
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.331002331002331
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.16239316239316237
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.10909090909090909
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.062004662004662
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.331002331002331
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.48717948717948717
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5454545454545454
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.62004662004662
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.46621244210597373
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4178830428830428
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.42502313070898473
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.31002331002331
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.4731934731934732
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5431235431235432
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6083916083916084
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.31002331002331
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.1577311577311577
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1086247086247086
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.060839160839160834
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.31002331002331
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.4731934731934732
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5431235431235432
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6083916083916084
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4519785373832247
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4023217523217523
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4106739429542078
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.30303030303030304
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.46386946386946387
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5268065268065268
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5967365967365967
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.30303030303030304
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.15462315462315462
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.10536130536130535
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05967365967365966
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.30303030303030304
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.46386946386946387
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5268065268065268
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5967365967365967
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.44299689615589044
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.39438801938801926
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4031610579311292
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.27972027972027974
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.4289044289044289
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.49417249417249415
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5641025641025641
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.27972027972027974
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.14296814296814295
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.09883449883449884
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05641025641025641
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.27972027972027974
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.4289044289044289
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.49417249417249415
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5641025641025641
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.41745494156327173
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.37105672105672094
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3800930218379113
name: Cosine Map@100
Fine tuning poc1-5e
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("cferreiragonz/bge-base-fastdds-questions-5b-epochs")
sentences = [
'* "AUTOMATIC_LIVELINESS_QOS": The service takes the responsibility for\n renewing the leases at the required rates, as long as the local\n process where the participant is running and the link connecting it\n to remote participants exists, the entities within the remote\n participant will be considered alive. This kind is suitable for\n applications that only need to detect whether a remote application\n is still running.',
'What is the primary mechanism used by the service to ensure that a particular entity on the network remains considered "alive" when using the LivelinessQosPolicy with the "AUTOMATIC_ LIVELINESS_ QOS" kind?',
'What is the purpose of loading an XML profiles file before creating entities in Fast DDS?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.3333 |
cosine_accuracy@3 |
0.4918 |
cosine_accuracy@5 |
0.5524 |
cosine_accuracy@10 |
0.6247 |
cosine_precision@1 |
0.3333 |
cosine_precision@3 |
0.1639 |
cosine_precision@5 |
0.1105 |
cosine_precision@10 |
0.0625 |
cosine_recall@1 |
0.3333 |
cosine_recall@3 |
0.4918 |
cosine_recall@5 |
0.5524 |
cosine_recall@10 |
0.6247 |
cosine_ndcg@10 |
0.472 |
cosine_mrr@10 |
0.4239 |
cosine_map@100 |
0.4312 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.331 |
cosine_accuracy@3 |
0.4872 |
cosine_accuracy@5 |
0.5455 |
cosine_accuracy@10 |
0.62 |
cosine_precision@1 |
0.331 |
cosine_precision@3 |
0.1624 |
cosine_precision@5 |
0.1091 |
cosine_precision@10 |
0.062 |
cosine_recall@1 |
0.331 |
cosine_recall@3 |
0.4872 |
cosine_recall@5 |
0.5455 |
cosine_recall@10 |
0.62 |
cosine_ndcg@10 |
0.4662 |
cosine_mrr@10 |
0.4179 |
cosine_map@100 |
0.425 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.31 |
cosine_accuracy@3 |
0.4732 |
cosine_accuracy@5 |
0.5431 |
cosine_accuracy@10 |
0.6084 |
cosine_precision@1 |
0.31 |
cosine_precision@3 |
0.1577 |
cosine_precision@5 |
0.1086 |
cosine_precision@10 |
0.0608 |
cosine_recall@1 |
0.31 |
cosine_recall@3 |
0.4732 |
cosine_recall@5 |
0.5431 |
cosine_recall@10 |
0.6084 |
cosine_ndcg@10 |
0.452 |
cosine_mrr@10 |
0.4023 |
cosine_map@100 |
0.4107 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.303 |
cosine_accuracy@3 |
0.4639 |
cosine_accuracy@5 |
0.5268 |
cosine_accuracy@10 |
0.5967 |
cosine_precision@1 |
0.303 |
cosine_precision@3 |
0.1546 |
cosine_precision@5 |
0.1054 |
cosine_precision@10 |
0.0597 |
cosine_recall@1 |
0.303 |
cosine_recall@3 |
0.4639 |
cosine_recall@5 |
0.5268 |
cosine_recall@10 |
0.5967 |
cosine_ndcg@10 |
0.443 |
cosine_mrr@10 |
0.3944 |
cosine_map@100 |
0.4032 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.2797 |
cosine_accuracy@3 |
0.4289 |
cosine_accuracy@5 |
0.4942 |
cosine_accuracy@10 |
0.5641 |
cosine_precision@1 |
0.2797 |
cosine_precision@3 |
0.143 |
cosine_precision@5 |
0.0988 |
cosine_precision@10 |
0.0564 |
cosine_recall@1 |
0.2797 |
cosine_recall@3 |
0.4289 |
cosine_recall@5 |
0.4942 |
cosine_recall@10 |
0.5641 |
cosine_ndcg@10 |
0.4175 |
cosine_mrr@10 |
0.3711 |
cosine_map@100 |
0.3801 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 5
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
fp16
: True
tf32
: False
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 5
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: False
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.6639 |
10 |
5.0927 |
- |
- |
- |
- |
- |
0.9959 |
15 |
- |
0.3916 |
0.3898 |
0.4021 |
0.3546 |
0.4027 |
1.3278 |
20 |
3.3958 |
- |
- |
- |
- |
- |
1.9917 |
30 |
2.6034 |
0.3893 |
0.4034 |
0.4163 |
0.3719 |
0.4222 |
2.6556 |
40 |
2.1012 |
- |
- |
- |
- |
- |
2.9876 |
45 |
- |
0.3975 |
0.4085 |
0.4240 |
0.3780 |
0.4291 |
3.3195 |
50 |
1.8189 |
- |
- |
- |
- |
- |
3.9834 |
60 |
1.715 |
0.4029 |
0.411 |
0.4236 |
0.3794 |
0.4288 |
4.6473 |
70 |
1.6089 |
- |
- |
- |
- |
- |
4.9793 |
75 |
- |
0.4032 |
0.4107 |
0.4250 |
0.3801 |
0.4312 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}