|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:3853 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: BAAI/bge-base-en-v1.5 |
|
datasets: [] |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
widget: |
|
- source_sentence: 'The environment variable accepts several types of units to specify |
|
the |
|
|
|
values of the parameters. Also, both lowercase and uppercase letters |
|
|
|
are valid. The following list shows the available units and their |
|
|
|
corresponding symbols:' |
|
sentences: |
|
- What is the primary purpose of using eProsima DDS Record and Replay in ROS 2, |
|
as described in the provided text? |
|
- What is the purpose of installing SWIG when setting up Fast DDS Python bindings? |
|
- What is the primary purpose of setting the "FASTDDS_ BUILTIN_TRANSPORTS" environment |
|
variable in Fast DDS? |
|
- source_sentence: '+-----------------------+-----------------------------+-----------------------------+-----------------------------+ |
|
|
|
| **StatusKind Value** | **StatusKind Name** | **Data field Name** | |
|
**IDL Data field Type** | |
|
|
|
+-----------------------+-----------------------------+-----------------------------+-----------------------------+ |
|
|
|
| 7 | "SampleLostInfo" | sample_lost_status | |
|
SampleLostStatus | |
|
|
|
+-----------------------+-----------------------------+-----------------------------+-----------------------------+' |
|
sentences: |
|
- What is the purpose of the "SampleLostInfo" value in the Monitor Service Status |
|
Topic? |
|
- What is the primary method for installing the Fast DDS library and its dependencies |
|
on a Mac OS environment from sources? |
|
- What is a way for an application to request the creation of a DataReader with |
|
unique listening locators on Fast DDS? |
|
- source_sentence: " 1. Create a DataReader for the previous type. Make sure that\ |
|
\ the\n DataReader does not have DataSharing disabled." |
|
sentences: |
|
- What is the purpose of the "SampleInfo" object returned when a sample is retrieved |
|
from the DataReader, in addition to the sample data? |
|
- What is the necessary condition to create a DataReader in Zero-Copy, as described |
|
in the provided steps? |
|
- What is the primary function of the "TransportConfigQos" QoS Policy, as described |
|
in the provided context? |
|
- source_sentence: "Note: Currently the \"generation_rank\" is not implemented, and\ |
|
\ its value is\n always set to \"0\". It will be implemented on a future release\ |
|
\ of\n *Fast DDS*." |
|
sentences: |
|
- What is the current state of the "generation_rank" feature in Fast DDS? |
|
- What is the purpose of the "disable_positive_ACKs" data member in the RTPSReliableReaderQos |
|
policy? |
|
- What is required to be implemented by a Custom Filter's factory, according to |
|
the provided interface? |
|
- source_sentence: " For further information about Fast DDS build system dependencies\n\ |
|
\ regarding QNX 7.1, please refer to the Fast DDS Build system\n dependencies\ |
|
\ section." |
|
sentences: |
|
- What is required for installing eProsima Fast DDS on a QNX 7.1 target from sources? |
|
- What is the primary function of the "ordered_access" data member in the PresentationQosPolicy? |
|
- What is the primary purpose of the SubscriberListener class in terms of handling |
|
state changes on a Subscriber? |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: Fine tuning poc1 |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 768 |
|
type: dim_768 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.30536130536130535 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.4988344988344988 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.5547785547785548 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.627039627039627 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.30536130536130535 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.16627816627816627 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.11095571095571094 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.0627039627039627 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.30536130536130535 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.4988344988344988 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.5547785547785548 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.627039627039627 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.46678781045558054 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.41558996558996547 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.4221848409021621 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 512 |
|
type: dim_512 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.29836829836829837 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.48484848484848486 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.5431235431235432 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.627039627039627 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.29836829836829837 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.1616161616161616 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.1086247086247086 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.0627039627039627 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.29836829836829837 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.48484848484848486 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.5431235431235432 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.627039627039627 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.4610322834562284 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.40834535834535834 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.4148840457241853 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 256 |
|
type: dim_256 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.3006993006993007 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.4801864801864802 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.5221445221445221 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.6060606060606061 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.3006993006993007 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.16006216006216004 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.10442890442890443 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.0606060606060606 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.3006993006993007 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.4801864801864802 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.5221445221445221 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.6060606060606061 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.45215211249211645 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.4032643282643281 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.41142292258910923 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 128 |
|
type: dim_128 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.289044289044289 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.46153846153846156 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.5174825174825175 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.5944055944055944 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.289044289044289 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.15384615384615385 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.1034965034965035 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.05944055944055943 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.289044289044289 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.46153846153846156 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.5174825174825175 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.5944055944055944 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.4392655353082458 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.389960964960965 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.39812034059584056 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 64 |
|
type: dim_64 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.2564102564102564 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.4149184149184149 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.47785547785547783 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.5547785547785548 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.2564102564102564 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.1383061383061383 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.09557109557109555 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.05547785547785547 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.2564102564102564 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.4149184149184149 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.47785547785547783 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.5547785547785548 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.4019295040984946 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.3534585784585784 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.3621954461291384 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# Fine tuning poc1 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
- **Language:** en |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("cferreiragonz/bge-base-fastdds-questions") |
|
# Run inference |
|
sentences = [ |
|
' For further information about Fast DDS build system dependencies\n regarding QNX 7.1, please refer to the Fast DDS Build system\n dependencies section.', |
|
'What is required for installing eProsima Fast DDS on a QNX 7.1 target from sources?', |
|
'What is the primary purpose of the SubscriberListener class in terms of handling state changes on a Subscriber?', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_768` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.3054 | |
|
| cosine_accuracy@3 | 0.4988 | |
|
| cosine_accuracy@5 | 0.5548 | |
|
| cosine_accuracy@10 | 0.627 | |
|
| cosine_precision@1 | 0.3054 | |
|
| cosine_precision@3 | 0.1663 | |
|
| cosine_precision@5 | 0.111 | |
|
| cosine_precision@10 | 0.0627 | |
|
| cosine_recall@1 | 0.3054 | |
|
| cosine_recall@3 | 0.4988 | |
|
| cosine_recall@5 | 0.5548 | |
|
| cosine_recall@10 | 0.627 | |
|
| cosine_ndcg@10 | 0.4668 | |
|
| cosine_mrr@10 | 0.4156 | |
|
| **cosine_map@100** | **0.4222** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_512` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.2984 | |
|
| cosine_accuracy@3 | 0.4848 | |
|
| cosine_accuracy@5 | 0.5431 | |
|
| cosine_accuracy@10 | 0.627 | |
|
| cosine_precision@1 | 0.2984 | |
|
| cosine_precision@3 | 0.1616 | |
|
| cosine_precision@5 | 0.1086 | |
|
| cosine_precision@10 | 0.0627 | |
|
| cosine_recall@1 | 0.2984 | |
|
| cosine_recall@3 | 0.4848 | |
|
| cosine_recall@5 | 0.5431 | |
|
| cosine_recall@10 | 0.627 | |
|
| cosine_ndcg@10 | 0.461 | |
|
| cosine_mrr@10 | 0.4083 | |
|
| **cosine_map@100** | **0.4149** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_256` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.3007 | |
|
| cosine_accuracy@3 | 0.4802 | |
|
| cosine_accuracy@5 | 0.5221 | |
|
| cosine_accuracy@10 | 0.6061 | |
|
| cosine_precision@1 | 0.3007 | |
|
| cosine_precision@3 | 0.1601 | |
|
| cosine_precision@5 | 0.1044 | |
|
| cosine_precision@10 | 0.0606 | |
|
| cosine_recall@1 | 0.3007 | |
|
| cosine_recall@3 | 0.4802 | |
|
| cosine_recall@5 | 0.5221 | |
|
| cosine_recall@10 | 0.6061 | |
|
| cosine_ndcg@10 | 0.4522 | |
|
| cosine_mrr@10 | 0.4033 | |
|
| **cosine_map@100** | **0.4114** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_128` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.289 | |
|
| cosine_accuracy@3 | 0.4615 | |
|
| cosine_accuracy@5 | 0.5175 | |
|
| cosine_accuracy@10 | 0.5944 | |
|
| cosine_precision@1 | 0.289 | |
|
| cosine_precision@3 | 0.1538 | |
|
| cosine_precision@5 | 0.1035 | |
|
| cosine_precision@10 | 0.0594 | |
|
| cosine_recall@1 | 0.289 | |
|
| cosine_recall@3 | 0.4615 | |
|
| cosine_recall@5 | 0.5175 | |
|
| cosine_recall@10 | 0.5944 | |
|
| cosine_ndcg@10 | 0.4393 | |
|
| cosine_mrr@10 | 0.39 | |
|
| **cosine_map@100** | **0.3981** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_64` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.2564 | |
|
| cosine_accuracy@3 | 0.4149 | |
|
| cosine_accuracy@5 | 0.4779 | |
|
| cosine_accuracy@10 | 0.5548 | |
|
| cosine_precision@1 | 0.2564 | |
|
| cosine_precision@3 | 0.1383 | |
|
| cosine_precision@5 | 0.0956 | |
|
| cosine_precision@10 | 0.0555 | |
|
| cosine_recall@1 | 0.2564 | |
|
| cosine_recall@3 | 0.4149 | |
|
| cosine_recall@5 | 0.4779 | |
|
| cosine_recall@10 | 0.5548 | |
|
| cosine_ndcg@10 | 0.4019 | |
|
| cosine_mrr@10 | 0.3535 | |
|
| **cosine_map@100** | **0.3622** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `gradient_accumulation_steps`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 4 |
|
- `lr_scheduler_type`: cosine |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `tf32`: False |
|
- `load_best_model_at_end`: True |
|
- `optim`: adamw_torch_fused |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 16 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 4 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: False |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch_fused |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |
|
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| |
|
| 0.6639 | 10 | 5.0047 | - | - | - | - | - | |
|
| 0.9959 | 15 | - | 0.3624 | 0.3806 | 0.3842 | 0.3318 | 0.3864 | |
|
| 1.3278 | 20 | 3.3543 | - | - | - | - | - | |
|
| 1.9917 | 30 | 2.5931 | 0.3886 | 0.4016 | 0.4103 | 0.3603 | 0.4153 | |
|
| 2.6556 | 40 | 2.1763 | - | - | - | - | - | |
|
| 2.9876 | 45 | - | 0.3966 | 0.4126 | 0.4156 | 0.3623 | 0.4205 | |
|
| 3.3195 | 50 | 2.0242 | - | - | - | - | - | |
|
| **3.9834** | **60** | **1.9003** | **0.3981** | **0.4114** | **0.4149** | **0.3622** | **0.4222** | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.10.13 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.41.2 |
|
- PyTorch: 2.1.2 |
|
- Accelerate: 0.30.1 |
|
- Datasets: 2.19.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |