CausalLM-14B-exl2 / README.md
cgus's picture
Create README.md
44b735e
|
raw
history blame
1.62 kB
metadata
base_model: CausalLM/14B
datasets:
  - JosephusCheung/GuanacoDataset
  - Open-Orca/OpenOrca
  - stingning/ultrachat
  - meta-math/MetaMathQA
  - liuhaotian/LLaVA-Instruct-150K
  - jondurbin/airoboros-3.1
  - WizardLM/WizardLM_evol_instruct_V2_196k
  - RyokoAI/ShareGPT52K
  - RyokoAI/Fandom23K
  - milashkaarshif/MoeGirlPedia_wikitext_raw_archive
  - wikipedia
  - wiki_lingua
  - fnlp/moss-003-sft-data
  - garage-bAInd/Open-Platypus
  - LDJnr/Puffin
  - openbmb/llava_zh
  - BAAI/COIG
  - TigerResearch/tigerbot-zhihu-zh-10k
  - liwu/MNBVC
  - teknium/openhermes
inference: false
language:
  - en
  - zh
license: wtfpl
model_creator: CausalLM
model_name: CausalLM 14B
model_type: llama
pipeline_tag: text-generation
prompt_template: >-
  <|im_start|>system {system_message}<|im_end|> <|im_start|>user
  {prompt}<|im_end|> <|im_start|>assistant 
quantized_by: cgus
tags:
  - llama
  - llama2

CausalLM 14B - GPTQ

Description

Experimental exl2 quantization for CausalLM-14B for Exllamav2.
I had some issues during quantization process, so I suspect it might have quality issues.
3.5bpw version barely fits 12GB VRAM but has unusually high perplexity for wikitext dataset.
I couldn't measure perplexity for 4bpw version and to compare it with TheBloke's GPTQ, so I have no idea if my quantization has issues or it supposed to be like this.

You could try this exl2 version but I'd recommend to use TheBloke's GPTQ version instead.