Q-Learning Agent playing1 FrozenLake-v1
This is a trained model of a Q-Learning agent playing FrozenLake-v1 .
Usage
import gymnasium as gym
from huggingface_sb3 import load_from_hub
import numpy as np
import pickle
# Load the Q table
env_name = "FrozenLake-v1"
model_name = "q-FrozenLake-v1-4x4-noSlippery"
model_path = load_from_hub(repo_id="ch-bz/" + model_name, filename="q-learning.pkl")
Qtable = pickle.load(open(model_path, "rb"))["qtable"]
# Run the demonstration of the result
env = gym.make("FrozenLake-v1", map_name="4x4", is_slippery=False, render_mode="human")
state, info = env.reset()
while True:
action = np.argmax(Qtable[state][:])
state, reward, terminated, truncated, info = env.step(action)
env.render()
if terminated or truncated:
state, info = env.reset()
Evaluation results
- mean_reward on FrozenLake-v1-4x4-no_slipperyself-reported1.00 +/- 0.00