chansung's picture
End of training
05e38bd verified
metadata
license: gemma
library_name: peft
tags:
  - alignment-handbook
  - trl
  - sft
  - generated_from_trainer
base_model: google/gemma-7b
datasets:
  - chansung/no_robots_only_coding
model-index:
  - name: gemma-7b-sft-qlora-no-robots15
    results: []

gemma-7b-sft-qlora-no-robots15

This model is a fine-tuned version of google/gemma-7b on the chansung/no_robots_only_coding dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2808

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss
21.9058 0.91 5 7.6562
13.5645 2.0 11 6.6359
10.2613 2.91 16 6.0754
9.903 4.0 22 3.1116
4.594 4.91 27 1.6371
1.6122 6.0 33 1.4160
1.3971 6.91 38 1.3411
1.2757 8.0 44 1.3074
1.1233 8.91 49 1.2756
0.9741 10.0 55 1.2736
0.9266 10.91 60 1.2791
0.8584 12.0 66 1.2753
0.8714 12.91 71 1.2842
0.8421 13.64 75 1.2808

Framework versions

  • PEFT 0.7.1
  • Transformers 4.39.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2