chaouch's picture
End of training
cc50952 verified
|
raw
history blame
2.62 kB
metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-gtzan2
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7125

distilhubert-finetuned-gtzan2

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5220
  • Accuracy: 0.7125

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7489 1.0 29 1.4959 0.3875
1.328 2.0 58 2.0243 0.35
1.2168 3.0 87 1.1332 0.5875
1.0299 4.0 116 1.4826 0.5375
0.911 5.0 145 1.2510 0.625
1.0819 6.0 174 1.7365 0.55
0.9513 7.0 203 1.3000 0.6
0.5687 8.0 232 1.0503 0.7125
0.4684 9.0 261 1.1167 0.7125
0.2836 10.0 290 1.5990 0.65
0.138 11.0 319 1.2096 0.7375
0.0406 12.0 348 1.7311 0.6375
0.0341 13.0 377 1.7048 0.6375
0.0059 14.0 406 1.4933 0.7
0.0034 15.0 435 1.5220 0.7125

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2