metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-tweet_eval-offensive
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: offensive
metrics:
- name: Accuracy
type: accuracy
value: 0.8089123867069486
- name: F1
type: f1
value: 0.8060281168230459
distilbert-base-uncased-finetuned-tweet_eval-offensive
This model is a fine-tuned version of distilbert-base-uncased on the tweet_eval dataset. It achieves the following results on the evaluation set:
- Loss: 0.4185
- Accuracy: 0.8089
- F1: 0.8060
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 1.0 | 187 | 0.4259 | 0.8059 | 0.7975 |
0.46 | 2.0 | 374 | 0.4185 | 0.8089 | 0.8060 |
Framework versions
- Transformers 4.18.0
- Pytorch 1.9.1
- Datasets 2.1.0
- Tokenizers 0.12.1