cherifkhalifah's picture
Finetuned model on SNLI
2ac4994 verified
---
base_model: sentence-transformers/all-MiniLM-L12-v2
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:100
- loss:CosineSimilarityLoss
widget:
- source_sentence: Children smiling and waving at camera
sentences:
- There are women showing affection.
- The woman is waiting for a friend.
- There are children present
- source_sentence: A woman is walking across the street eating a banana, while a man
is following with his briefcase.
sentences:
- The boy does a skateboarding trick.
- A boy flips a burger.
- A woman eats a banana and walks across a street, and there is a man trailing behind
her.
- source_sentence: Two adults, one female in white, with shades and one male, gray
clothes, walking across a street, away from a eatery with a blurred image of a
dark colored red shirted person in the foreground.
sentences:
- An elderly man sits in a small shop.
- A person is training his horse for a competition.
- Two adults swimming in water
- source_sentence: The school is having a special event in order to show the american
culture on how other cultures are dealt with in parties.
sentences:
- The woman is wearing green.
- A school is hosting an event.
- The adults are both male and female.
- source_sentence: A woman is walking across the street eating a banana, while a man
is following with his briefcase.
sentences:
- The boy is wearing safety equipment.
- Two women are at a restaurant drinking wine.
- A person that is hungry.
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: snli dev
type: snli-dev
metrics:
- type: pearson_cosine
value: -0.6052519474756299
name: Pearson Cosine
- type: spearman_cosine
value: -0.6083622621490653
name: Spearman Cosine
- type: pearson_manhattan
value: -0.5848188618976576
name: Pearson Manhattan
- type: spearman_manhattan
value: -0.6065714846764287
name: Spearman Manhattan
- type: pearson_euclidean
value: -0.5863856474033792
name: Pearson Euclidean
- type: spearman_euclidean
value: -0.6083622185008256
name: Spearman Euclidean
- type: pearson_dot
value: -0.6052519468947102
name: Pearson Dot
- type: spearman_dot
value: -0.6083623057915619
name: Spearman Dot
- type: pearson_max
value: -0.5848188618976576
name: Pearson Max
- type: spearman_max
value: -0.6065714846764287
name: Spearman Max
---
# SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) <!-- at revision a05860a77cef7b37e0048a7864658139bc18a854 -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("cherifkhalifah/finetuned-snli-MiniLM-L12-v2")
# Run inference
sentences = [
'A woman is walking across the street eating a banana, while a man is following with his briefcase.',
'A person that is hungry.',
'Two women are at a restaurant drinking wine.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `snli-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:-------------------|:------------|
| pearson_cosine | -0.6053 |
| spearman_cosine | -0.6084 |
| pearson_manhattan | -0.5848 |
| spearman_manhattan | -0.6066 |
| pearson_euclidean | -0.5864 |
| spearman_euclidean | -0.6084 |
| pearson_dot | -0.6053 |
| spearman_dot | -0.6084 |
| pearson_max | -0.5848 |
| **spearman_max** | **-0.6066** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 100 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
* Approximate statistics based on the first 100 samples:
| | sentence_0 | sentence_1 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 8 tokens</li><li>mean: 23.59 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 11.36 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.49</li><li>max: 1.0</li></ul> |
* Samples:
| sentence_0 | sentence_1 | label |
|:-------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:-----------------|
| <code>Woman in white in foreground and a man slightly behind walking with a sign for John's Pizza and Gyro in the background.</code> | <code>They are working for John's Pizza.</code> | <code>0.5</code> |
| <code>A man with blond-hair, and a brown shirt drinking out of a public water fountain.</code> | <code>A blond man getting a drink of water from a fountain in the park.</code> | <code>0.5</code> |
| <code>A woman is walking across the street eating a banana, while a man is following with his briefcase.</code> | <code>A person eating.</code> | <code>0.0</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 4
- `fp16`: True
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | snli-dev_spearman_max |
|:-----:|:----:|:---------------------:|
| 1.0 | 7 | -0.6099 |
| 2.0 | 14 | -0.6095 |
| 3.0 | 21 | -0.6085 |
| 4.0 | 28 | -0.6066 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->