metadata
license: apache-2.0
base_model: distilbert/distilbert-base-cased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: category-1-delivery-cancellation-distilbert-base-cased-v1
results: []
category-1-delivery-cancellation-distilbert-base-cased-v1
This model is a fine-tuned version of distilbert/distilbert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2696
- Accuracy: 0.9397
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 60
- eval_batch_size: 60
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 334 | 0.2828 | 0.8999 |
0.2294 | 2.0 | 668 | 0.2118 | 0.9283 |
0.1448 | 3.0 | 1002 | 0.1580 | 0.9446 |
0.1448 | 4.0 | 1336 | 0.2625 | 0.9156 |
0.1013 | 5.0 | 1670 | 0.2521 | 0.9264 |
0.0731 | 6.0 | 2004 | 0.2462 | 0.9356 |
0.0731 | 7.0 | 2338 | 0.2330 | 0.9405 |
0.0497 | 8.0 | 2672 | 0.2507 | 0.9393 |
0.0389 | 9.0 | 3006 | 0.2696 | 0.9386 |
0.0389 | 10.0 | 3340 | 0.2696 | 0.9397 |
Framework versions
- Transformers 4.43.2
- Pytorch 2.3.0
- Datasets 2.20.0
- Tokenizers 0.19.1