ppo-LunarLander-v2 / config.json
ckandemir's picture
Upload PPO LunarLander-v2 trained agent
f9e8fc3 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b08cd392dd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b08cd392e60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b08cd392ef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b08cd392f80>", "_build": "<function ActorCriticPolicy._build at 0x7b08cd393010>", "forward": "<function ActorCriticPolicy.forward at 0x7b08cd3930a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b08cd393130>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b08cd3931c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b08cd393250>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b08cd3932e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b08cd393370>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b08cd393400>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b08cd33d880>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1724092699680898010, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAANo9qz2uXbO6c7fMuG03vLMIU0i6Y+bpNwAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFei6UaAFyMAWyUS+aMAXSUR0CcvpBOYYzjdX2UKGgGR0BNPeI2wV0taAdLlGgIR0Ccv3Uwi7kGdX2UKGgGR0BwtiFfzBhyaAdNPAFoCEdAnMFFVDKHPHV9lChoBkdAcrWH9FWn0mgHS+NoCEdAnMKRqTKT0XV9lChoBkdAcCuhR64Ue2gHS8doCEdAnMO6Rhc7hnV9lChoBkdAQorWI42jwmgHS5VoCEdAnMXJZntfHHV9lChoBkdAcS8yDqW1MWgHS9VoCEdAnMb7NwBHTnV9lChoBkdAbnNhsqJ/G2gHS+JoCEdAnMhPNRm9QHV9lChoBkdAcmqq0dBBzGgHS+RoCEdAnMmaT0QK8nV9lChoBkdARRe9tdiUgWgHS5xoCEdAnMqBnFo+OnV9lChoBkdAca0jqv/za2gHS7hoCEdAnMzB3FDOT3V9lChoBkdAcnYEehf0E2gHS/doCEdAnM4oUWVNYnV9lChoBkdAbt9qM3qA0GgHS/toCEdAnM+f9UCJXXV9lChoBkdAca+fAbhm5GgHTSIBaAhHQJzRRmukk8l1fZQoaAZHQHLVhMewLVpoB0u0aAhHQJzTkMNMGot1fZQoaAZHQDjSBWgezUtoB0t/aAhHQJzUTDcdo391fZQoaAZHQG9UlTWGyopoB0vJaAhHQJzVcLeANG51fZQoaAZHQHODEe2d/axoB0vbaAhHQJzWsIrvsqt1fZQoaAZHQHDFXRb8m8doB0v1aAhHQJzYGzOX3QF1fZQoaAZHQFJQuBczImxoB0uKaAhHQJzY5e8f3ex1fZQoaAZHQD3HIo3Jgb9oB0uYaAhHQJza9Rjz7Mx1fZQoaAZHQHCeDPOY6XBoB0v0aAhHQJzcXdIoVmB1fZQoaAZHQHEQslXzUZxoB0vOaAhHQJzdhnf2saN1fZQoaAZHQHIVXXNC7btoB00GAWgIR0Cc3yFpPAO8dX2UKGgGR0BzN2ptJnQIaAdL0WgIR0Cc4rZ8a4tpdX2UKGgGR0Byaw+X7cfvaAdL/mgIR0Cc5LbHIZIhdX2UKGgGR0BxA/jKgZjyaAdL/WgIR0Cc5sKJ2t+1dX2UKGgGR0BLpB8hLXcyaAdLg2gIR0Cc58bhWHUMdX2UKGgGR0Bv39xbSqlxaAdL3mgIR0Cc6ZhwVCXydX2UKGgGR0ByMq4SYgJUaAdL/2gIR0Cc7JabF0gbdX2UKGgGRz/zx9srNGExaAdLiGgIR0Cc7Vo3rD64dX2UKGgGR0BwSNs67ulXaAdL5WgIR0Cc7qchTwUhdX2UKGgGR0BI4mozeoDQaAdLh2gIR0Cc72zKcNH6dX2UKGgGR0BIZLOJLuhLaAdLk2gIR0Cc8ESRKYiQdX2UKGgGR0BTuLRSgoPTaAdLfmgIR0Cc8QPZZjhDdX2UKGgGR0ByZaMsH0K7aAdNBQFoCEdAnPO/T9bX6XV9lChoBkdAb58uPFNtZWgHS7RoCEdAnPTWFzuF6HV9lChoBkdAb+Ld0q6OHWgHS9FoCEdAnPYKTwDvE3V9lChoBkdAcJGyWRigCmgHS9doCEdAnPdditq59XV9lChoBkdAcaHQUYbbUWgHS8poCEdAnPio4uK4x3V9lChoBkdAcPbByjpLVWgHS8JoCEdAnPsIqslsxnV9lChoBkdAcCLoJzDGcWgHS91oCEdAnPxX5JsfrHV9lChoBkdAcqGuanaWX2gHS8VoCEdAnP3njU/fO3V9lChoBkdAbVXzYmLLp2gHS8doCEdAnP9iUC7sfXV9lChoBkdAco3Ikqtoz2gHS9ZoCEdAnQDqdYnv2HV9lChoBkfAJYHgHeJpFmgHS35oCEdAnQPKArhBJXV9lChoBkdAcl8usLfDUGgHS+RoCEdAnQXOsgdOqXV9lChoBkdAPDCyMUAT7GgHS6FoCEdAnQbetr9ETnV9lChoBkdAcUUf1YhdMWgHTQoBaAhHQJ0IZaePJaJ1fZQoaAZHQHPhnLmp2lloB02mAWgIR0CdDCWWhRIjdX2UKGgGR0BCfgvDgqEwaAdLn2gIR0CdDQ0bLlmwdX2UKGgGR0ByvFy7wrlOaAdLvmgIR0CdDiuh9LHudX2UKGgGR0BxUikYXO4YaAdLwWgIR0CdD01OCXhPdX2UKGgGR0BvL8MI/qxDaAdLuWgIR0CdEF5uZThpdX2UKGgGR0Bv/taGHpKSaAdLu2gIR0CdEXpS75EddX2UKGgGR0BxVPeO4oZyaAdLvmgIR0CdFEF1B+nZdX2UKGgGR0Bw0/VbzK9xaAdL22gIR0CdFeF9KEnLdX2UKGgGR0BuXwEMb3oLaAdLxGgIR0CdF1NMoMKDdX2UKGgGR0BxhIKNQ0oCaAdNBgFoCEdAnRlthiLEUHV9lChoBkdAcL5vC/GlymgHS+1oCEdAnR0cwUQCjnV9lChoBkdAbGTxKg7HQ2gHTbQBaAhHQJ0fopqh11Z1fZQoaAZHQHKsJc5bQkZoB00HAWgIR0CdIRvNeMQ3dX2UKGgGR0BxkPWjGkvcaAdLvmgIR0CdIjS88La3dX2UKGgGR0BwhRiw0O3EaAdLyWgIR0CdJIgSeyzHdX2UKGgGR0BxeofJV81GaAdLsGgIR0CdJYSxJNCadX2UKGgGR0BxmZTXJ5miaAdL+GgIR0CdJvWEbo8qdX2UKGgGR0BwxxQizLOiaAdL8GgIR0CdKFVrAP/adX2UKGgGR0BxR2nO0LMLaAdL42gIR0CdKapQUHpsdX2UKGgGR0BUmkIC2c8UaAdLrmgIR0CdLAK0UoKEdX2UKGgGR0BxCrgHeJpGaAdL0WgIR0CdLTtF8XvZdX2UKGgGR0BxgIpF1B+naAdL7GgIR0CdLpxEv0yydX2UKGgGR0BAGjt5UtI1aAdLkWgIR0CdL2py6tkndX2UKGgGR0BOH1+y7f52aAdLi2gIR0CdMDOktVaPdX2UKGgGR0Bv2Jh8YyfuaAdNGAFoCEdAnTMJ+2E0znV9lChoBkdALnUvoNd7fGgHS3xoCEdAnTPDAJswc3V9lChoBkdAcazzxgAp8WgHS8FoCEdAnTTxeHBUJnV9lChoBkdAUljCQ9zOo2gHS4JoCEdAnTWqBmPHUHV9lChoBkdAcddOvMbFTGgHS/BoCEdAnTcJbt7a7HV9lChoBkdAcL/LlV94NmgHS8FoCEdAnTgZz90ihXV9lChoBkdAcaXBAfMfR2gHS85oCEdAnTqLiMo+fXV9lChoBkdAQRRx7zCk42gHS1loCEdAnTsbEpAlfXV9lChoBkdAc9Yc2itaIWgHS89oCEdAnTxHcUM5O3V9lChoBkdAcGy2jfvWpmgHS7poCEdAnT1URWcSXnV9lChoBkdAcPa29+PRzGgHS+NoCEdAnT6foRqXW3V9lChoBkdAcQ/Av+OwPmgHS8hoCEdAnUEOW8h9s3V9lChoBkdAQyH3Fkxyn2gHS29oCEdAnUG6QJXyRXV9lChoBkdASSfGS6lLvmgHS49oCEdAnUKLSApazXV9lChoBkdAco6tlqagEmgHS91oCEdAnUPcTrVvuXV9lChoBkdAcLbyPMjeK2gHS99oCEdAnUVW3azu4XV9lChoBkdAcH2DfFaStGgHS8BoCEdAnUbJiNKh+XV9lChoBkdAcUxOgQHzH2gHS9poCEdAnUoLcsUZenV9lChoBkdAcRCBT4tYjmgHS9ZoCEdAnUvXgLqlg3V9lChoBkdAcCfTodMj/2gHS89oCEdAnU12P1ct5HV9lChoBkdAcVyBZZB9kWgHS7ZoCEdAnU7m5+Ytx3V9lChoBkdAcBk5j6N2kmgHS7VoCEdAnVBu2d/ax3V9lChoBkdAQOhksjFAFGgHS5xoCEdAnVKp75VOsXV9lChoBkdARgFUbT+efGgHS2BoCEdAnVM3q/ub7XV9lChoBkdAcRxFPSDyv2gHS9VoCEdAnVR7hegL7XV9lChoBkdASP3r+o99t2gHS5VoCEdAnVVSHM2WIHV9lChoBkdAcT6o2GZeA2gHTQ0BaAhHQJ1W2P8yeqd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}