Edit model card

LEPISZCZE-aspectemo-allegro__herbert-base-cased-v1

Description

Finetuned allegro/herbert-base-cased model on clarin-pl/aspectemo dataset.

Trained via clarin-pl-embeddings library, included in LEPISZCZE benchmark.

Results on clarin-pl/aspectemo

accuracy f1_macro f1_micro f1_weighted recall_macro recall_micro recall_weighted precision_macro precision_micro precision_weighted
value 0.952 0.368 0.585 0.586 0.371 0.566 0.566 0.392 0.606 0.617

Metrics per class

precision recall f1 support
a_amb 0.2 0.033 0.057 91
a_minus_m 0.632 0.542 0.584 1033
a_minus_s 0.156 0.209 0.178 67
a_plus_m 0.781 0.694 0.735 1015
a_plus_s 0.153 0.22 0.18 41
a_zero 0.431 0.529 0.475 501

Finetuning hyperparameters

Hyperparameter Name Value
use_scheduler True
optimizer AdamW
warmup_steps 25
learning_rate 0.0005
adam_epsilon 1e-05
weight_decay 0
finetune_last_n_layers 4
classifier_dropout 0.2
max_seq_length 512
batch_size 64
max_epochs 20
early_stopping_monitor val/Loss
early_stopping_mode min
early_stopping_patience 3

Citation (BibTeX)

@article{augustyniak2022way,
  title={This is the way: designing and compiling LEPISZCZE, a comprehensive NLP benchmark for Polish},
  author={Augustyniak, Lukasz and Tagowski, Kamil and Sawczyn, Albert and Janiak, Denis and Bartusiak, Roman and Szymczak, Adrian and Janz, Arkadiusz and Szyma{'n}ski, Piotr and W{\k{a}}troba, Marcin and Morzy, Miko{\l}aj and others},
  journal={Advances in Neural Information Processing Systems},
  volume={35},
  pages={21805--21818},
  year={2022}
}
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train clarin-knext/LEPISZCZE-aspectemo-allegro__herbert-base-cased-v1