See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: sethuiyer/Medichat-Llama3-8B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 8f4aa7a0b98b2e53_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/8f4aa7a0b98b2e53_train_data.json
type:
field_instruction: article
field_output: highlights
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: clarxus/2f0f3723-365d-4d2d-a07f-a8bb3af6b465
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 64
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 600
micro_batch_size: 8
mlflow_experiment_name: /tmp/8f4aa7a0b98b2e53_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: e781cba0-0f96-4ca7-8392-1bc8c1aefa82
wandb_project: Gradients-On-Seven
wandb_run: your_name
wandb_runid: e781cba0-0f96-4ca7-8392-1bc8c1aefa82
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
2f0f3723-365d-4d2d-a07f-a8bb3af6b465
This model is a fine-tuned version of sethuiyer/Medichat-Llama3-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.3059
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 600
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0029 | 1 | 2.0014 |
1.2087 | 0.1427 | 50 | 1.3692 |
1.1754 | 0.2853 | 100 | 1.3181 |
1.2042 | 0.4280 | 150 | 1.3154 |
1.2064 | 0.5706 | 200 | 1.2959 |
1.137 | 0.7133 | 250 | 1.2843 |
1.1595 | 0.8559 | 300 | 1.2735 |
1.1834 | 0.9986 | 350 | 1.2743 |
0.8874 | 1.1412 | 400 | 1.3179 |
0.8685 | 1.2839 | 450 | 1.3170 |
0.8389 | 1.4265 | 500 | 1.3191 |
0.8458 | 1.5692 | 550 | 1.3059 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for clarxus/2f0f3723-365d-4d2d-a07f-a8bb3af6b465
Base model
sethuiyer/Medichat-Llama3-8B