metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: image_classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.50625
image_classification
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.3344
- Accuracy: 0.5062
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 10 | 2.0716 | 0.1187 |
No log | 2.0 | 20 | 2.0629 | 0.1375 |
No log | 3.0 | 30 | 2.0521 | 0.1562 |
No log | 4.0 | 40 | 2.0437 | 0.2125 |
No log | 5.0 | 50 | 2.0276 | 0.25 |
No log | 6.0 | 60 | 2.0066 | 0.3063 |
No log | 7.0 | 70 | 1.9779 | 0.3 |
No log | 8.0 | 80 | 1.9538 | 0.3063 |
No log | 9.0 | 90 | 1.9229 | 0.325 |
No log | 10.0 | 100 | 1.8739 | 0.3563 |
No log | 11.0 | 110 | 1.8404 | 0.3375 |
No log | 12.0 | 120 | 1.7943 | 0.3688 |
No log | 13.0 | 130 | 1.7616 | 0.35 |
No log | 14.0 | 140 | 1.7186 | 0.3937 |
No log | 15.0 | 150 | 1.6926 | 0.4062 |
No log | 16.0 | 160 | 1.6778 | 0.4062 |
No log | 17.0 | 170 | 1.6579 | 0.4062 |
No log | 18.0 | 180 | 1.6462 | 0.4 |
No log | 19.0 | 190 | 1.6143 | 0.4188 |
No log | 20.0 | 200 | 1.5932 | 0.4313 |
No log | 21.0 | 210 | 1.5833 | 0.4625 |
No log | 22.0 | 220 | 1.5726 | 0.4437 |
No log | 23.0 | 230 | 1.5545 | 0.4188 |
No log | 24.0 | 240 | 1.5220 | 0.4688 |
No log | 25.0 | 250 | 1.5237 | 0.4188 |
No log | 26.0 | 260 | 1.5175 | 0.4375 |
No log | 27.0 | 270 | 1.5008 | 0.4 |
No log | 28.0 | 280 | 1.5100 | 0.4875 |
No log | 29.0 | 290 | 1.4730 | 0.4938 |
No log | 30.0 | 300 | 1.4842 | 0.5125 |
No log | 31.0 | 310 | 1.4967 | 0.45 |
No log | 32.0 | 320 | 1.4584 | 0.4562 |
No log | 33.0 | 330 | 1.4458 | 0.4813 |
No log | 34.0 | 340 | 1.4850 | 0.475 |
No log | 35.0 | 350 | 1.4558 | 0.4688 |
No log | 36.0 | 360 | 1.4438 | 0.5 |
No log | 37.0 | 370 | 1.4290 | 0.475 |
No log | 38.0 | 380 | 1.4347 | 0.4938 |
No log | 39.0 | 390 | 1.4283 | 0.4437 |
No log | 40.0 | 400 | 1.4149 | 0.4813 |
No log | 41.0 | 410 | 1.3983 | 0.4813 |
No log | 42.0 | 420 | 1.4079 | 0.45 |
No log | 43.0 | 430 | 1.3984 | 0.45 |
No log | 44.0 | 440 | 1.3866 | 0.5 |
No log | 45.0 | 450 | 1.3809 | 0.4875 |
No log | 46.0 | 460 | 1.3858 | 0.4813 |
No log | 47.0 | 470 | 1.3981 | 0.4875 |
No log | 48.0 | 480 | 1.3822 | 0.4813 |
No log | 49.0 | 490 | 1.3728 | 0.4437 |
1.4038 | 50.0 | 500 | 1.3828 | 0.45 |
1.4038 | 51.0 | 510 | 1.3842 | 0.4813 |
1.4038 | 52.0 | 520 | 1.3460 | 0.4688 |
1.4038 | 53.0 | 530 | 1.3513 | 0.4938 |
1.4038 | 54.0 | 540 | 1.3645 | 0.4875 |
1.4038 | 55.0 | 550 | 1.3273 | 0.5062 |
1.4038 | 56.0 | 560 | 1.3470 | 0.525 |
1.4038 | 57.0 | 570 | 1.4006 | 0.45 |
1.4038 | 58.0 | 580 | 1.3259 | 0.5312 |
1.4038 | 59.0 | 590 | 1.3030 | 0.5062 |
1.4038 | 60.0 | 600 | 1.3526 | 0.5125 |
1.4038 | 61.0 | 610 | 1.3665 | 0.4625 |
1.4038 | 62.0 | 620 | 1.3689 | 0.4813 |
1.4038 | 63.0 | 630 | 1.3139 | 0.4813 |
1.4038 | 64.0 | 640 | 1.3618 | 0.4875 |
1.4038 | 65.0 | 650 | 1.3596 | 0.4938 |
1.4038 | 66.0 | 660 | 1.3360 | 0.4813 |
1.4038 | 67.0 | 670 | 1.3201 | 0.5062 |
1.4038 | 68.0 | 680 | 1.3615 | 0.5 |
1.4038 | 69.0 | 690 | 1.3335 | 0.5062 |
1.4038 | 70.0 | 700 | 1.2843 | 0.5687 |
1.4038 | 71.0 | 710 | 1.3697 | 0.4813 |
1.4038 | 72.0 | 720 | 1.2891 | 0.5188 |
1.4038 | 73.0 | 730 | 1.3355 | 0.5 |
1.4038 | 74.0 | 740 | 1.3400 | 0.4813 |
1.4038 | 75.0 | 750 | 1.3140 | 0.4938 |
1.4038 | 76.0 | 760 | 1.3492 | 0.4688 |
1.4038 | 77.0 | 770 | 1.2946 | 0.5188 |
1.4038 | 78.0 | 780 | 1.3635 | 0.45 |
1.4038 | 79.0 | 790 | 1.3224 | 0.5 |
1.4038 | 80.0 | 800 | 1.3092 | 0.525 |
1.4038 | 81.0 | 810 | 1.3298 | 0.475 |
1.4038 | 82.0 | 820 | 1.3626 | 0.4562 |
1.4038 | 83.0 | 830 | 1.3028 | 0.5375 |
1.4038 | 84.0 | 840 | 1.3025 | 0.5375 |
1.4038 | 85.0 | 850 | 1.3433 | 0.5188 |
1.4038 | 86.0 | 860 | 1.2508 | 0.5437 |
1.4038 | 87.0 | 870 | 1.3074 | 0.5062 |
1.4038 | 88.0 | 880 | 1.3227 | 0.4875 |
1.4038 | 89.0 | 890 | 1.3069 | 0.5188 |
1.4038 | 90.0 | 900 | 1.3278 | 0.4875 |
1.4038 | 91.0 | 910 | 1.3475 | 0.4875 |
1.4038 | 92.0 | 920 | 1.3310 | 0.4875 |
1.4038 | 93.0 | 930 | 1.3015 | 0.5062 |
1.4038 | 94.0 | 940 | 1.3635 | 0.4875 |
1.4038 | 95.0 | 950 | 1.3610 | 0.475 |
1.4038 | 96.0 | 960 | 1.2927 | 0.525 |
1.4038 | 97.0 | 970 | 1.3346 | 0.475 |
1.4038 | 98.0 | 980 | 1.3628 | 0.4625 |
1.4038 | 99.0 | 990 | 1.3301 | 0.4813 |
0.8016 | 100.0 | 1000 | 1.3301 | 0.475 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3