File size: 16,507 Bytes
0135154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# docs and experiment results can be found at https://docs.cleanrl.dev/rl-algorithms/ppo/#ppo_continuous_actionpy
import argparse
import os
import random
import time
from distutils.util import strtobool

import gymnasium as gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.distributions.normal import Normal
from torch.utils.tensorboard import SummaryWriter


def parse_args():
    # fmt: off
    parser = argparse.ArgumentParser()
    parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"),
        help="the name of this experiment")
    parser.add_argument("--seed", type=int, default=1,
        help="seed of the experiment")
    parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
        help="if toggled, `torch.backends.cudnn.deterministic=False`")
    parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
        help="if toggled, cuda will be enabled by default")
    parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
        help="if toggled, this experiment will be tracked with Weights and Biases")
    parser.add_argument("--wandb-project-name", type=str, default="cleanRL",
        help="the wandb's project name")
    parser.add_argument("--wandb-entity", type=str, default=None,
        help="the entity (team) of wandb's project")
    parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
        help="whether to capture videos of the agent performances (check out `videos` folder)")
    parser.add_argument("--save-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
        help="whether to save model into the `runs/{run_name}` folder")
    parser.add_argument("--upload-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
        help="whether to upload the saved model to huggingface")
    parser.add_argument("--hf-entity", type=str, default="",
        help="the user or org name of the model repository from the Hugging Face Hub")

    # Algorithm specific arguments
    parser.add_argument("--env-id", type=str, default="HalfCheetah-v4",
        help="the id of the environment")
    parser.add_argument("--total-timesteps", type=int, default=1000000,
        help="total timesteps of the experiments")
    parser.add_argument("--learning-rate", type=float, default=3e-4,
        help="the learning rate of the optimizer")
    parser.add_argument("--num-envs", type=int, default=1,
        help="the number of parallel game environments")
    parser.add_argument("--num-steps", type=int, default=2048,
        help="the number of steps to run in each environment per policy rollout")
    parser.add_argument("--anneal-lr", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
        help="Toggle learning rate annealing for policy and value networks")
    parser.add_argument("--gamma", type=float, default=0.99,
        help="the discount factor gamma")
    parser.add_argument("--gae-lambda", type=float, default=0.95,
        help="the lambda for the general advantage estimation")
    parser.add_argument("--num-minibatches", type=int, default=32,
        help="the number of mini-batches")
    parser.add_argument("--update-epochs", type=int, default=10,
        help="the K epochs to update the policy")
    parser.add_argument("--norm-adv", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
        help="Toggles advantages normalization")
    parser.add_argument("--clip-coef", type=float, default=0.2,
        help="the surrogate clipping coefficient")
    parser.add_argument("--clip-vloss", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
        help="Toggles whether or not to use a clipped loss for the value function, as per the paper.")
    parser.add_argument("--ent-coef", type=float, default=0.0,
        help="coefficient of the entropy")
    parser.add_argument("--vf-coef", type=float, default=0.5,
        help="coefficient of the value function")
    parser.add_argument("--max-grad-norm", type=float, default=0.5,
        help="the maximum norm for the gradient clipping")
    parser.add_argument("--target-kl", type=float, default=None,
        help="the target KL divergence threshold")
    args = parser.parse_args()
    args.batch_size = int(args.num_envs * args.num_steps)
    args.minibatch_size = int(args.batch_size // args.num_minibatches)
    # fmt: on
    return args


def make_env(env_id, idx, capture_video, run_name, gamma):
    def thunk():
        if capture_video and idx == 0:
            env = gym.make(env_id, render_mode="rgb_array")
            env = gym.wrappers.RecordVideo(env, f"videos/{run_name}")
        else:
            env = gym.make(env_id)
        env = gym.wrappers.FlattenObservation(env)  # deal with dm_control's Dict observation space
        env = gym.wrappers.RecordEpisodeStatistics(env)
        env = gym.wrappers.ClipAction(env)
        env = gym.wrappers.NormalizeObservation(env)
        env = gym.wrappers.TransformObservation(env, lambda obs: np.clip(obs, -10, 10))
        env = gym.wrappers.NormalizeReward(env, gamma=gamma)
        env = gym.wrappers.TransformReward(env, lambda reward: np.clip(reward, -10, 10))
        return env

    return thunk


def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
    torch.nn.init.orthogonal_(layer.weight, std)
    torch.nn.init.constant_(layer.bias, bias_const)
    return layer


class Agent(nn.Module):
    def __init__(self, envs):
        super().__init__()
        self.critic = nn.Sequential(
            layer_init(nn.Linear(np.array(envs.single_observation_space.shape).prod(), 64)),
            nn.Tanh(),
            layer_init(nn.Linear(64, 64)),
            nn.Tanh(),
            layer_init(nn.Linear(64, 1), std=1.0),
        )
        self.actor_mean = nn.Sequential(
            layer_init(nn.Linear(np.array(envs.single_observation_space.shape).prod(), 64)),
            nn.Tanh(),
            layer_init(nn.Linear(64, 64)),
            nn.Tanh(),
            layer_init(nn.Linear(64, np.prod(envs.single_action_space.shape)), std=0.01),
        )
        self.actor_logstd = nn.Parameter(torch.zeros(1, np.prod(envs.single_action_space.shape)))

    def get_value(self, x):
        return self.critic(x)

    def get_action_and_value(self, x, action=None):
        action_mean = self.actor_mean(x)
        action_logstd = self.actor_logstd.expand_as(action_mean)
        action_std = torch.exp(action_logstd)
        probs = Normal(action_mean, action_std)
        if action is None:
            action = probs.sample()
        return action, probs.log_prob(action).sum(1), probs.entropy().sum(1), self.critic(x)


if __name__ == "__main__":
    args = parse_args()
    run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}"
    if args.track:
        import wandb

        wandb.init(
            project=args.wandb_project_name,
            entity=args.wandb_entity,
            sync_tensorboard=True,
            config=vars(args),
            name=run_name,
            monitor_gym=True,
            save_code=True,
        )
    writer = SummaryWriter(f"runs/{run_name}")
    writer.add_text(
        "hyperparameters",
        "|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
    )

    # TRY NOT TO MODIFY: seeding
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.backends.cudnn.deterministic = args.torch_deterministic

    device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")

    # env setup
    envs = gym.vector.SyncVectorEnv(
        [make_env(args.env_id, i, args.capture_video, run_name, args.gamma) for i in range(args.num_envs)]
    )
    assert isinstance(envs.single_action_space, gym.spaces.Box), "only continuous action space is supported"

    agent = Agent(envs).to(device)
    optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate, eps=1e-5)

    # ALGO Logic: Storage setup
    obs = torch.zeros((args.num_steps, args.num_envs) + envs.single_observation_space.shape).to(device)
    actions = torch.zeros((args.num_steps, args.num_envs) + envs.single_action_space.shape).to(device)
    logprobs = torch.zeros((args.num_steps, args.num_envs)).to(device)
    rewards = torch.zeros((args.num_steps, args.num_envs)).to(device)
    dones = torch.zeros((args.num_steps, args.num_envs)).to(device)
    values = torch.zeros((args.num_steps, args.num_envs)).to(device)

    # TRY NOT TO MODIFY: start the game
    global_step = 0
    start_time = time.time()
    next_obs, _ = envs.reset(seed=args.seed)
    next_obs = torch.Tensor(next_obs).to(device)
    next_done = torch.zeros(args.num_envs).to(device)
    num_updates = args.total_timesteps // args.batch_size

    for update in range(1, num_updates + 1):
        # Annealing the rate if instructed to do so.
        if args.anneal_lr:
            frac = 1.0 - (update - 1.0) / num_updates
            lrnow = frac * args.learning_rate
            optimizer.param_groups[0]["lr"] = lrnow

        for step in range(0, args.num_steps):
            global_step += 1 * args.num_envs
            obs[step] = next_obs
            dones[step] = next_done

            # ALGO LOGIC: action logic
            with torch.no_grad():
                action, logprob, _, value = agent.get_action_and_value(next_obs)
                values[step] = value.flatten()
            actions[step] = action
            logprobs[step] = logprob

            # TRY NOT TO MODIFY: execute the game and log data.
            next_obs, reward, terminations, truncations, infos = envs.step(action.cpu().numpy())
            done = np.logical_or(terminations, truncations)
            rewards[step] = torch.tensor(reward).to(device).view(-1)
            next_obs, next_done = torch.Tensor(next_obs).to(device), torch.Tensor(done).to(device)

            # Only print when at least 1 env is done
            if "final_info" not in infos:
                continue

            for info in infos["final_info"]:
                # Skip the envs that are not done
                if info is None:
                    continue
                print(f"global_step={global_step}, episodic_return={info['episode']['r']}")
                writer.add_scalar("charts/episodic_return", info["episode"]["r"], global_step)
                writer.add_scalar("charts/episodic_length", info["episode"]["l"], global_step)

        # bootstrap value if not done
        with torch.no_grad():
            next_value = agent.get_value(next_obs).reshape(1, -1)
            advantages = torch.zeros_like(rewards).to(device)
            lastgaelam = 0
            for t in reversed(range(args.num_steps)):
                if t == args.num_steps - 1:
                    nextnonterminal = 1.0 - next_done
                    nextvalues = next_value
                else:
                    nextnonterminal = 1.0 - dones[t + 1]
                    nextvalues = values[t + 1]
                delta = rewards[t] + args.gamma * nextvalues * nextnonterminal - values[t]
                advantages[t] = lastgaelam = delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelam
            returns = advantages + values

        # flatten the batch
        b_obs = obs.reshape((-1,) + envs.single_observation_space.shape)
        b_logprobs = logprobs.reshape(-1)
        b_actions = actions.reshape((-1,) + envs.single_action_space.shape)
        b_advantages = advantages.reshape(-1)
        b_returns = returns.reshape(-1)
        b_values = values.reshape(-1)

        # Optimizing the policy and value network
        b_inds = np.arange(args.batch_size)
        clipfracs = []
        for epoch in range(args.update_epochs):
            np.random.shuffle(b_inds)
            for start in range(0, args.batch_size, args.minibatch_size):
                end = start + args.minibatch_size
                mb_inds = b_inds[start:end]

                _, newlogprob, entropy, newvalue = agent.get_action_and_value(b_obs[mb_inds], b_actions[mb_inds])
                logratio = newlogprob - b_logprobs[mb_inds]
                ratio = logratio.exp()

                with torch.no_grad():
                    # calculate approx_kl http://joschu.net/blog/kl-approx.html
                    old_approx_kl = (-logratio).mean()
                    approx_kl = ((ratio - 1) - logratio).mean()
                    clipfracs += [((ratio - 1.0).abs() > args.clip_coef).float().mean().item()]

                mb_advantages = b_advantages[mb_inds]
                if args.norm_adv:
                    mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-8)

                # Policy loss
                pg_loss1 = -mb_advantages * ratio
                pg_loss2 = -mb_advantages * torch.clamp(ratio, 1 - args.clip_coef, 1 + args.clip_coef)
                pg_loss = torch.max(pg_loss1, pg_loss2).mean()

                # Value loss
                newvalue = newvalue.view(-1)
                if args.clip_vloss:
                    v_loss_unclipped = (newvalue - b_returns[mb_inds]) ** 2
                    v_clipped = b_values[mb_inds] + torch.clamp(
                        newvalue - b_values[mb_inds],
                        -args.clip_coef,
                        args.clip_coef,
                    )
                    v_loss_clipped = (v_clipped - b_returns[mb_inds]) ** 2
                    v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped)
                    v_loss = 0.5 * v_loss_max.mean()
                else:
                    v_loss = 0.5 * ((newvalue - b_returns[mb_inds]) ** 2).mean()

                entropy_loss = entropy.mean()
                loss = pg_loss - args.ent_coef * entropy_loss + v_loss * args.vf_coef

                optimizer.zero_grad()
                loss.backward()
                nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)
                optimizer.step()

            if args.target_kl is not None:
                if approx_kl > args.target_kl:
                    break

        y_pred, y_true = b_values.cpu().numpy(), b_returns.cpu().numpy()
        var_y = np.var(y_true)
        explained_var = np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y

        # TRY NOT TO MODIFY: record rewards for plotting purposes
        writer.add_scalar("charts/learning_rate", optimizer.param_groups[0]["lr"], global_step)
        writer.add_scalar("losses/value_loss", v_loss.item(), global_step)
        writer.add_scalar("losses/policy_loss", pg_loss.item(), global_step)
        writer.add_scalar("losses/entropy", entropy_loss.item(), global_step)
        writer.add_scalar("losses/old_approx_kl", old_approx_kl.item(), global_step)
        writer.add_scalar("losses/approx_kl", approx_kl.item(), global_step)
        writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step)
        writer.add_scalar("losses/explained_variance", explained_var, global_step)
        print("SPS:", int(global_step / (time.time() - start_time)))
        writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)

    if args.save_model:
        model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model"
        torch.save(agent.state_dict(), model_path)
        print(f"model saved to {model_path}")
        from cleanrl_utils.evals.ppo_eval import evaluate

        episodic_returns = evaluate(
            model_path,
            make_env,
            args.env_id,
            eval_episodes=10,
            run_name=f"{run_name}-eval",
            Model=Agent,
            device=device,
            gamma=args.gamma,
        )
        for idx, episodic_return in enumerate(episodic_returns):
            writer.add_scalar("eval/episodic_return", episodic_return, idx)

        if args.upload_model:
            from cleanrl_utils.huggingface import push_to_hub

            repo_name = f"{args.env_id}-{args.exp_name}-seed{args.seed}"
            repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_name
            push_to_hub(args, episodic_returns, repo_id, "PPO", f"runs/{run_name}", f"videos/{run_name}-eval")

    envs.close()
    writer.close()