|
--- |
|
language: en |
|
tags: |
|
- pythae |
|
- reproducibility |
|
license: apache-2.0 |
|
--- |
|
|
|
This model was trained with pythae. It can be downloaded or reloaded using the method `load_from_hf_hub` |
|
```python |
|
>>> from pythae.models import AutoModel |
|
>>> model = AutoModel.load_from_hf_hub(hf_hub_path="clementchadebec/reproduced_wrapped_poincare_vae") |
|
``` |
|
|
|
## Reproducibility |
|
This trained model reproduces the results of the official implementation of [1]. |
|
|
|
| Model | Dataset | Metric | Obtained value | Reference value | |
|
|:---:|:---:|:---:|:---:|:---:| |
|
| PoincareVAE | MNIST | NLL (500 IS) | 101.66 (0.00) | 101.47 (0.01) | |
|
|
|
[1] Mathieu, E., Le Lan, C., Maddison, C. J., Tomioka, R., & Teh, Y. W. (2019). Continuous hierarchical representations with poincaré variational auto-encoders. Advances in neural information processing systems, 32. |