File size: 2,660 Bytes
a84720c f078fb6 94d456c a84720c 94d456c f078fb6 94d456c f078fb6 94d456c e47d9ad 94d456c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
---
license: wtfpl
thumbnail: https://huggingface.co/clibrain/mamba-2.8b-ft-synthia-v1.3/resolve/main/mamba-syn-removebg-preview.png?download=true
datasets:
- migtissera/Synthia-v1.3
language:
- en
---
# MAMBA (2.8B) 🐍 fine-tuned on Synthia-v1.3
<div style="text-align:center;width:250px;height:250px;">
<img src="https://huggingface.co/clibrain/mamba-2.8b-ft-synthia-v1.3/resolve/main/mamba-syn-removebg-preview.png" alt="mamba-hermes logo"">
</div>
Model Card is still WIP!
## Base model info
Mamba is a new state space model architecture showing promising performance on information-dense data such as language modeling, where previous subquadratic models fall short of Transformers.
It is based on the line of progress on [structured state space models](https://github.com/state-spaces/s4),
with an efficient hardware-aware design and implementation in the spirit of [FlashAttention](https://github.com/Dao-AILab/flash-attention).
## Dataset info
Not Provided
## Usage
```sh
pip install torch==2.1.0 transformers==4.35.0 causal-conv1d==1.0.0 mamba-ssm==1.0.1
```
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
CHAT_TEMPLATE_ID = "HuggingFaceH4/zephyr-7b-beta"
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model_name = "clibrain/mamba-2.8b-ft-synthia-v1.3"
eos_token = "<|endoftext|>"
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.eos_token = eos_token
tokenizer.pad_token = tokenizer.eos_token
tokenizer.chat_template = AutoTokenizer.from_pretrained(CHAT_TEMPLATE_ID).chat_template
model = MambaLMHeadModel.from_pretrained(
model_name, device=device, dtype=torch.float16)
messages = []
prompt = "Tell me 5 sites to visit in Spain"
messages.append(dict(role="user", content=prompt))
input_ids = tokenizer.apply_chat_template(
messages, return_tensors="pt", add_generation_prompt=True
).to(device)
out = model.generate(
input_ids=input_ids,
max_length=2000,
temperature=0.9,
top_p=0.7,
eos_token_id=tokenizer.eos_token_id,
)
decoded = tokenizer.batch_decode(out)
assistant_message = (
decoded[0].split("<|assistant|>\n")[-1].replace(eos_token, "")
)
print(assistant_message)
```
## Gradio Demo
```sh
git clone https://github.com/mrm8488/mamba-chat.git
cd mamba-chat
pip install -r requirements.txt
pip install -q gradio==4.8.0
python app.py \
--model clibrain/mamba-2.8b-ft-synthia-v1.3 \
--share
```
## Evaluations
Coming soon!
## Acknowledgments
Thanks to [mamba-chat](https://github.com/havenhq/mamba-chat/tree/main) for heavily inspiring our work |