metadata
license: wtfpl
datasets:
- HuggingFaceH4/no_robots
pipeline_tag: text-generation
MAMBA (2.8B) π fine-tuned on OpenHerms
Model Card is still WIP!
Base model info
Mamba is a new state space model architecture showing promising performance on information-dense data such as language modeling, where previous subquadratic models fall short of Transformers. It is based on the line of progress on structured state space models, with an efficient hardware-aware design and implementation in the spirit of FlashAttention.
Dataset info
TBA
Usage
pip install transformers
pip install causal-conv1d<=1.0.2
pip install mamba-ssm
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
CHAT_TEMPLATE_ID = "HuggingFaceH4/zephyr-7b-beta"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_name = "clibrain/mamba-2.8b-instruct-openhermes"
eos_token = "<|endoftext|>"
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.eos_token = eos_token
tokenizer.pad_token = tokenizer.eos_token
tokenizer.chat_template = AutoTokenizer.from_pretrained(CHAT_TEMPLATE_ID).chat_template
model = MambaLMHeadModel.from_pretrained(
model_name, device=device, dtype=torch.float16)
history_dict: list[dict[str, str]] = []
prompt = "Tell me 5 sites to visit in Spain"
history_dict.append(dict(role="user", content=prompt))
input_ids = tokenizer.apply_chat_template(
history_dict, return_tensors="pt", add_generation_prompt=True
).to(device)
out = model.generate(
input_ids=input_ids,
max_length=2000,
temperature=0.9,
top_p=0.7,
eos_token_id=tokenizer.eos_token_id,
)
decoded = tokenizer.batch_decode(out)
assistant_message = (
decoded[0].split("<|assistant|>\n")[-1].replace(eos, "")
)
print(assistant_message)
Gradio Demo
git clone https://github.com/mrm8488/mamba-chat.git
cd mamba-chat
pip install -r requirements.txt
pip install -q gradio==4.8.0
python app.py \
--model clibrain/mamba-2.8b-instruct-openhermes \
--share
Evaluations
Coming soon!
Acknowledgments
Thanks to mamba-chat for heavily inspiring our work