final-lr2e-5-bs16-fp16-2
This model is a fine-tuned version of GroNLP/hateBERT on an https://github.com/rewire-online/edos dataset. It achieves the following results on the evaluation set:
- Loss: 0.4219
- F1 Macro: 0.8457
- F1 Weighted: 0.8868
- F1: 0.7658
- Accuracy: 0.887
- Confusion Matrix: [[2809 221] [ 231 739]]
- Confusion Matrix Norm: [[0.92706271 0.07293729] [0.23814433 0.76185567]]
- Classification Report: precision recall f1-score support 0 0.924013 0.927063 0.925535 3030.000
1 0.769792 0.761856 0.765803 970.000 accuracy 0.887000 0.887000 0.887000 0.887 macro avg 0.846902 0.844459 0.845669 4000.000 weighted avg 0.886614 0.887000 0.886800 4000.000
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 12345
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Weighted | F1 | Accuracy | Confusion Matrix | Confusion Matrix Norm | Classification Report |
---|---|---|---|---|---|---|---|---|---|---|
0.3177 | 1.0 | 1000 | 0.2894 | 0.8323 | 0.8812 | 0.7373 | 0.886 | [[2904 126] | ||
[ 330 640]] | [[0.95841584 0.04158416] | |||||||||
[0.34020619 0.65979381]] | precision recall f1-score support | |||||||||
0 0.897959 0.958416 0.927203 3030.000 | ||||||||||
1 0.835509 0.659794 0.737327 970.000 | ||||||||||
accuracy 0.886000 0.886000 0.886000 0.886 | ||||||||||
macro avg 0.866734 0.809105 0.832265 4000.000 | ||||||||||
weighted avg 0.882815 0.886000 0.881158 4000.000 | ||||||||||
0.2232 | 2.0 | 2000 | 0.3370 | 0.8405 | 0.8830 | 0.7579 | 0.8832 | [[2802 228] | ||
[ 239 731]] | [[0.92475248 0.07524752] | |||||||||
[0.24639175 0.75360825]] | precision recall f1-score support | |||||||||
0 0.921407 0.924752 0.923077 3030.00000 | ||||||||||
1 0.762252 0.753608 0.757906 970.00000 | ||||||||||
accuracy 0.883250 0.883250 0.883250 0.88325 | ||||||||||
macro avg 0.841830 0.839180 0.840491 4000.00000 | ||||||||||
weighted avg 0.882812 0.883250 0.883023 4000.00000 | ||||||||||
0.1534 | 3.0 | 3000 | 0.4219 | 0.8457 | 0.8868 | 0.7658 | 0.887 | [[2809 221] | ||
[ 231 739]] | [[0.92706271 0.07293729] | |||||||||
[0.23814433 0.76185567]] | precision recall f1-score support | |||||||||
0 0.924013 0.927063 0.925535 3030.000 | ||||||||||
1 0.769792 0.761856 0.765803 970.000 | ||||||||||
accuracy 0.887000 0.887000 0.887000 0.887 | ||||||||||
macro avg 0.846902 0.844459 0.845669 4000.000 | ||||||||||
weighted avg 0.886614 0.887000 0.886800 4000.000 |
Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for clincolnoz/HateBERT-edos
Base model
google-bert/bert-base-uncased