final-lr2e-5-bs16-fp16-2
This model is a fine-tuned version of clincolnoz/MoreSexistBERT on an https://github.com/rewire-online/edos dataset. It achieves the following results on the evaluation set:
- Loss: 0.3337
- F1 Macro: 0.8461
- F1 Weighted: 0.8868
- F1: 0.7671
- Accuracy: 0.8868
- Confusion Matrix: [[2801 229] [ 224 746]]
- Confusion Matrix Norm: [[0.92442244 0.07557756] [0.23092784 0.76907216]]
- Classification Report: precision recall f1-score support 0 0.925950 0.924422 0.925186 3030.00000
1 0.765128 0.769072 0.767095 970.00000 accuracy 0.886750 0.886750 0.886750 0.88675 macro avg 0.845539 0.846747 0.846140 4000.00000 weighted avg 0.886951 0.886750 0.886849 4000.00000
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 12345
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Weighted | F1 | Accuracy | Confusion Matrix | Confusion Matrix Norm | Classification Report |
---|---|---|---|---|---|---|---|---|---|---|
0.3196 | 1.0 | 1000 | 0.2973 | 0.8423 | 0.8871 | 0.7554 | 0.8902 | [[2883 147] | ||
[ 292 678]] | [[0.95148515 0.04851485] | |||||||||
[0.30103093 0.69896907]] | precision recall f1-score support | |||||||||
0 0.908031 0.951485 0.929251 3030.00000 | ||||||||||
1 0.821818 0.698969 0.755432 970.00000 | ||||||||||
accuracy 0.890250 0.890250 0.890250 0.89025 | ||||||||||
macro avg 0.864925 0.825227 0.842341 4000.00000 | ||||||||||
weighted avg 0.887125 0.890250 0.887100 4000.00000 | ||||||||||
0.2447 | 2.0 | 2000 | 0.3277 | 0.8447 | 0.8872 | 0.7623 | 0.8885 | [[2839 191] | ||
[ 255 715]] | [[0.9369637 0.0630363] | |||||||||
[0.2628866 0.7371134]] | precision recall f1-score support | |||||||||
0 0.917582 0.936964 0.927172 3030.0000 | ||||||||||
1 0.789183 0.737113 0.762260 970.0000 | ||||||||||
accuracy 0.888500 0.888500 0.888500 0.8885 | ||||||||||
macro avg 0.853383 0.837039 0.844716 4000.0000 | ||||||||||
weighted avg 0.886446 0.888500 0.887181 4000.0000 | ||||||||||
0.2037 | 3.0 | 3000 | 0.3337 | 0.8461 | 0.8868 | 0.7671 | 0.8868 | [[2801 229] | ||
[ 224 746]] | [[0.92442244 0.07557756] | |||||||||
[0.23092784 0.76907216]] | precision recall f1-score support | |||||||||
0 0.925950 0.924422 0.925186 3030.00000 | ||||||||||
1 0.765128 0.769072 0.767095 970.00000 | ||||||||||
accuracy 0.886750 0.886750 0.886750 0.88675 | ||||||||||
macro avg 0.845539 0.846747 0.846140 4000.00000 | ||||||||||
weighted avg 0.886951 0.886750 0.886849 4000.00000 |
Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for clincolnoz/MoreSexistBERT-edos
Base model
google-bert/bert-base-uncased
Finetuned
clincolnoz/MoreSexistBERT