Mixtral MOE 2x10.7B
One of Best MoE Model reviewd by reddit community
MoE of the following models :
Local Test
hf (pretrained=cloudyu/Mixtral_11Bx2_MoE_19B), gen_kwargs: (None), limit: None, num_fewshot: 10, batch_size: auto (32)
Tasks Version Filter n-shot Metric Value Stderr hellaswag Yaml none 10 acc 0.7142 Β± 0.0045 none 10 acc_norm 0.8819 Β± 0.0032
gpu code example
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
## v2 models
model_path = "cloudyu/Mixtral_11Bx2_MoE_19B"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")
CPU example
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
## v2 models
model_path = "cloudyu/Mixtral_11Bx2_MoE_19B"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float32, device_map='cpu',local_files_only=False
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 74.41 |
AI2 Reasoning Challenge (25-Shot) | 71.16 |
HellaSwag (10-Shot) | 88.47 |
MMLU (5-Shot) | 66.31 |
TruthfulQA (0-shot) | 72.00 |
Winogrande (5-shot) | 83.27 |
GSM8k (5-shot) | 65.28 |
- Downloads last month
- 2,740
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for cloudyu/Mixtral_11Bx2_MoE_19B
Spaces using cloudyu/Mixtral_11Bx2_MoE_19B 19
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard71.160
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard88.470
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard66.310
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard72.000
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard83.270
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard65.280