|
--- |
|
library_name: peft |
|
language: |
|
- ms |
|
license: apache-2.0 |
|
base_model: openai/whisper-small |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- clt013/malay-speech-3k-rows-dataset_v2 |
|
model-index: |
|
- name: Whisper Small FT Malay - CLT013 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Small FT Malay - CLT013 |
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Malay Speech 3k dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8613 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 20 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-------:|:----:|:---------------:| |
|
| 2.1842 | 0.3731 | 100 | 0.8172 | |
|
| 0.7488 | 0.7463 | 200 | 0.8014 | |
|
| 0.6424 | 1.1194 | 300 | 0.8136 | |
|
| 0.5234 | 1.4925 | 400 | 0.7511 | |
|
| 0.4951 | 1.8657 | 500 | 0.8203 | |
|
| 0.3835 | 2.2388 | 600 | 0.8191 | |
|
| 0.3519 | 2.6119 | 700 | 0.8001 | |
|
| 0.3868 | 2.9851 | 800 | 0.8011 | |
|
| 0.2568 | 3.3582 | 900 | 0.8630 | |
|
| 0.2781 | 3.7313 | 1000 | 0.8269 | |
|
| 0.2535 | 4.1045 | 1100 | 0.8612 | |
|
| 0.2105 | 4.4776 | 1200 | 0.8486 | |
|
| 0.2104 | 4.8507 | 1300 | 0.8367 | |
|
| 0.1726 | 5.2239 | 1400 | 0.8692 | |
|
| 0.1672 | 5.5970 | 1500 | 0.8483 | |
|
| 0.1641 | 5.9701 | 1600 | 0.8443 | |
|
| 0.1186 | 6.3433 | 1700 | 0.9531 | |
|
| 0.1261 | 6.7164 | 1800 | 0.8578 | |
|
| 0.1211 | 7.0896 | 1900 | 0.8922 | |
|
| 0.0962 | 7.4627 | 2000 | 0.9107 | |
|
| 0.1188 | 7.8358 | 2100 | 0.8498 | |
|
| 0.0847 | 8.2090 | 2200 | 0.8554 | |
|
| 0.0802 | 8.5821 | 2300 | 0.9024 | |
|
| 0.0805 | 8.9552 | 2400 | 0.8649 | |
|
| 0.0559 | 9.3284 | 2500 | 0.8634 | |
|
| 0.053 | 9.7015 | 2600 | 0.8988 | |
|
| 0.0555 | 10.0746 | 2700 | 0.8657 | |
|
| 0.0415 | 10.4478 | 2800 | 0.8449 | |
|
| 0.0401 | 10.8209 | 2900 | 0.8658 | |
|
| 0.0318 | 11.1940 | 3000 | 0.8674 | |
|
| 0.0245 | 11.5672 | 3100 | 0.8491 | |
|
| 0.032 | 11.9403 | 3200 | 0.8694 | |
|
| 0.0186 | 12.3134 | 3300 | 0.8620 | |
|
| 0.0179 | 12.6866 | 3400 | 0.8555 | |
|
| 0.015 | 13.0597 | 3500 | 0.8730 | |
|
| 0.0176 | 13.4328 | 3600 | 0.8458 | |
|
| 0.0155 | 13.8060 | 3700 | 0.8454 | |
|
| 0.0121 | 14.1791 | 3800 | 0.8533 | |
|
| 0.0139 | 14.5522 | 3900 | 0.8604 | |
|
| 0.009 | 14.9254 | 4000 | 0.8676 | |
|
| 0.0095 | 15.2985 | 4100 | 0.8649 | |
|
| 0.0059 | 15.6716 | 4200 | 0.8728 | |
|
| 0.0065 | 16.0448 | 4300 | 0.8570 | |
|
| 0.0049 | 16.4179 | 4400 | 0.8521 | |
|
| 0.0042 | 16.7910 | 4500 | 0.8600 | |
|
| 0.0051 | 17.1642 | 4600 | 0.8741 | |
|
| 0.0037 | 17.5373 | 4700 | 0.8666 | |
|
| 0.0037 | 17.9104 | 4800 | 0.8691 | |
|
| 0.0029 | 18.2836 | 4900 | 0.8619 | |
|
| 0.0023 | 18.6567 | 5000 | 0.8603 | |
|
| 0.0019 | 19.0299 | 5100 | 0.8629 | |
|
| 0.0018 | 19.4030 | 5200 | 0.8608 | |
|
| 0.0018 | 19.7761 | 5300 | 0.8613 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.13.2 |
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.19.1 |