whisper-large-v2-english-2k-steps
This model is a fine-tuned version of openai/whisper-large-v2 on the English CommonVoice dataset (v11).
Model description
This model is finetuned for 2000 steps for research purposes which means that the transcriptions might not be that satisfactory for users.
Training and evaluation data
- Training Data: CommonVoice (v11) train split
- Validation Data: CommonVoice (v11) Validation split
- Test Data: CommonVoice (v11) Test split
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 50
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Transcription:
from datasets import load_dataset, Audio
import torch
from transformers import WhisperProcessor, WhisperForConditionalGeneration
# device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# load the model
processor = WhisperProcessor.from_pretrained("clu-ling/whisper-large-v2-english-2k-steps")
model = WhisperForConditionalGeneration.from_pretrained("clu-ling/whisper-large-v2-english-2k-steps").to(device)
forced_decoder_ids = processor.get_decoder_prompt_ids(language="en", task="transcribe")
# load the dataset
commonvoice_eval = load_dataset("mozilla-foundation/common_voice_11_0", "en", split="validation", streaming=True)
commonvoice_eval = commonvoice_eval.cast_column("audio", Audio(sampling_rate=16000))
sample = next(iter(commonvoice_eval))["audio"]
# features and generate token ids
input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
predicted_ids = model.generate(input_features.to(device), forced_decoder_ids=forced_decoder_ids)
# decode
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
print("Transcription:", transcription)
Evaluation:
Evaluates this model on mozilla-foundation/common_voice_11_0
test split.
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
from datasets import load_dataset, Audio
import evaluate
import torch
import re
from transformers import WhisperProcessor, WhisperForConditionalGeneration
# device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# metric
wer_metric = evaluate.load("wer")
# model
processor = WhisperProcessor.from_pretrained("clu-ling/whisper-large-v2-english-2k-steps")
model = WhisperForConditionalGeneration.from_pretrained("clu-ling/whisper-large-v2-english-2k-steps")
# dataset
dataset = load_dataset("mozilla-foundation/common_voice_11_0", "en", split="test", ) #cache_dir=args.cache_dir
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
#for debuggings: it gets two examples
#dataset = dataset.shard(num_shards=10000, index=0)
#print(dataset)
def normalize(batch):
batch["gold_text"] = whisper_norm(batch['sentence'])
return batch
def map_wer(batch):
model.to(device)
forced_decoder_ids = processor.get_decoder_prompt_ids(language = "en", task = "transcribe")
inputs = processor(batch["audio"]["array"], sampling_rate=batch["audio"]["sampling_rate"], return_tensors="pt").input_features
with torch.no_grad():
generated_ids = model.generate(inputs=inputs.to(device), forced_decoder_ids=forced_decoder_ids)
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
batch["predicted_text"] = whisper_norm(transcription)
return batch
# process GOLD text
processed_dataset = dataset.map(normalize)
# get predictions
predicted = processed_dataset.map(map_wer)
# word error rate
wer = wer_metric.compute(references=predicted['gold_text'], predictions=predicted['predicted_text'])
wer = round(100 * wer, 2)
print("WER:", wer)
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.1
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.