elsayedissa
commited on
Commit
•
558ea70
1
Parent(s):
ada48e6
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- wer
|
7 |
+
model-index:
|
8 |
+
- name: whisper-large-v2-arabic-5k-steps
|
9 |
+
results: []
|
10 |
+
datasets:
|
11 |
+
- mozilla-foundation/common_voice_11_0
|
12 |
+
language:
|
13 |
+
- ar
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# whisper-large-v2-arabic-5k-steps
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the Arabic CommonVoice dataset (v11).
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.3434
|
24 |
+
- Wer: 0.4239
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
This model is finetuned for 5000 steps for research purposes which means that the transcriptions might not be that satisfactory for users.
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
- Training Data: CommonVoice (v11) train split
|
33 |
+
- Validation Data: CommonVoice (v11) Validation split
|
34 |
+
- Test Data: CommonVoice (v11) Test split
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 1e-05
|
42 |
+
- train_batch_size: 50
|
43 |
+
- eval_batch_size: 16
|
44 |
+
- seed: 42
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 500
|
48 |
+
- training_steps: 5000
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
55 |
+
| 0.1638 | 1.78 | 1000 | 0.2295 | 0.4410 |
|
56 |
+
| 0.0587 | 3.57 | 2000 | 0.2337 | 0.4272 |
|
57 |
+
| 0.0125 | 5.35 | 3000 | 0.2745 | 0.4208 |
|
58 |
+
| 0.004 | 7.13 | 4000 | 0.3124 | 0.4252 |
|
59 |
+
| 0.0016 | 8.91 | 5000 | 0.3434 | 0.4239 |
|
60 |
+
|
61 |
+
### Transcription:
|
62 |
+
|
63 |
+
```python
|
64 |
+
from datasets import load_dataset, Audio
|
65 |
+
import torch
|
66 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
67 |
+
|
68 |
+
# device
|
69 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
70 |
+
|
71 |
+
# load the model
|
72 |
+
processor = WhisperProcessor.from_pretrained("clu-ling/whisper-large-v2-arabic-5k-steps")
|
73 |
+
model = WhisperForConditionalGeneration.from_pretrained("clu-ling/whisper-large-v2-arabic-5k-steps").to(device)
|
74 |
+
forced_decoder_ids = processor.get_decoder_prompt_ids(language="ar", task="transcribe")
|
75 |
+
|
76 |
+
# load the dataset
|
77 |
+
commonvoice_eval = load_dataset("mozilla-foundation/common_voice_11_0", "ar", split="validation", streaming=True)
|
78 |
+
commonvoice_eval = commonvoice_eval.cast_column("audio", Audio(sampling_rate=16000))
|
79 |
+
sample = next(iter(commonvoice_eval))["audio"]
|
80 |
+
|
81 |
+
# features and generate token ids
|
82 |
+
input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
|
83 |
+
predicted_ids = model.generate(input_features.to(device), forced_decoder_ids=forced_decoder_ids)
|
84 |
+
|
85 |
+
# decode
|
86 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
87 |
+
|
88 |
+
print("Transcription:", transcription)
|
89 |
+
Transcription: عمي هو أخو أبي.
|
90 |
+
```
|
91 |
+
|
92 |
+
### Evaluation:
|
93 |
+
|
94 |
+
Evaluates this model on `mozilla-foundation/common_voice_11_0` test split.
|
95 |
+
|
96 |
+
```python
|
97 |
+
import pyarabic.araby as araby
|
98 |
+
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
|
99 |
+
from datasets import load_dataset, Audio
|
100 |
+
import evaluate
|
101 |
+
import torch
|
102 |
+
import re
|
103 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
104 |
+
|
105 |
+
# device
|
106 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
107 |
+
|
108 |
+
# metric
|
109 |
+
wer_metric = evaluate.load("wer")
|
110 |
+
|
111 |
+
# model
|
112 |
+
processor = WhisperProcessor.from_pretrained("clu-ling/whisper-large-v2-arabic-5k-steps")
|
113 |
+
model = WhisperForConditionalGeneration.from_pretrained("clu-ling/whisper-large-v2-arabic-5k-steps")
|
114 |
+
|
115 |
+
# dataset
|
116 |
+
dataset = load_dataset("mozilla-foundation/common_voice_11_0", "ar", split="test", ) #cache_dir=args.cache_dir
|
117 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
|
118 |
+
|
119 |
+
#for debuggings: it gets two examples
|
120 |
+
#dataset = dataset.shard(num_shards=10000, index=0)
|
121 |
+
#print(dataset)
|
122 |
+
|
123 |
+
def clean_text(text):
|
124 |
+
"""Normalizes TRANSCRIPT"""
|
125 |
+
text = re.sub(r'[\,\?\.\!\-\;\:\"\“\%\٪\‘\”\�\«\»\،\.\:\؟\؛\*\>\<]', '', text) + " " # special characters
|
126 |
+
text = re.sub(r'http\S+', '', text) + " " # links
|
127 |
+
text = re.sub(r'[\[\]\(\)\-\/\{\}]', '', text) + " " # brackets
|
128 |
+
text = re.sub(r'\s+', ' ', text) + " " # extra white space
|
129 |
+
text = araby.strip_diacritics(text) # remove diacrirics
|
130 |
+
return text.strip()
|
131 |
+
|
132 |
+
def normalize(batch):
|
133 |
+
"""Normalizes GOLD"""
|
134 |
+
#batch["gold_text"] = whisper_norm(batch['sentence'])
|
135 |
+
batch["gold_text"] = clean_text(batch['sentence'])
|
136 |
+
return batch
|
137 |
+
|
138 |
+
def map_wer(batch):
|
139 |
+
model.to(device)
|
140 |
+
forced_decoder_ids = processor.get_decoder_prompt_ids(language = "ar", task = "transcribe")
|
141 |
+
inputs = processor(batch["audio"]["array"], sampling_rate=batch["audio"]["sampling_rate"], return_tensors="pt").input_features
|
142 |
+
with torch.no_grad():
|
143 |
+
generated_ids = model.generate(inputs=inputs.to(device), forced_decoder_ids=forced_decoder_ids)
|
144 |
+
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
145 |
+
batch["predicted_text"] = clean_text(transcription)
|
146 |
+
return batch
|
147 |
+
|
148 |
+
# process GOLD text
|
149 |
+
processed_dataset = dataset.map(normalize)
|
150 |
+
# get predictions
|
151 |
+
predicted = processed_dataset.map(map_wer)
|
152 |
+
|
153 |
+
# word error rate
|
154 |
+
wer = wer_metric.compute(references=predicted['gold_text'], predictions=predicted['predicted_text'])
|
155 |
+
wer = round(100 * wer, 2)
|
156 |
+
print("WER:", wer)
|
157 |
+
```
|
158 |
+
|
159 |
+
### Framework versions
|
160 |
+
|
161 |
+
- Transformers 4.26.0.dev0
|
162 |
+
- Pytorch 1.13.1
|
163 |
+
- Datasets 2.8.1.dev0
|
164 |
+
- Tokenizers 0.13.2
|