|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: whisper-small-spanish |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper-small-sp |
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the `commonvoice dataset v11` dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4485 |
|
- Wer: 20.6842 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 25000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:| |
|
| 2.2671 | 0.13 | 1000 | 2.2108 | 76.2667 | |
|
| 1.4465 | 0.26 | 2000 | 1.6057 | 67.8753 | |
|
| 1.0997 | 0.39 | 3000 | 1.1928 | 54.2433 | |
|
| 0.9389 | 0.52 | 4000 | 1.0020 | 47.8307 | |
|
| 0.7881 | 0.65 | 5000 | 0.8933 | 46.0046 | |
|
| 0.7596 | 0.78 | 6000 | 0.7721 | 38.5595 | |
|
| 0.5678 | 0.91 | 7000 | 0.6903 | 36.2897 | |
|
| 0.4412 | 1.04 | 8000 | 0.6476 | 32.7473 | |
|
| 0.4239 | 1.17 | 9000 | 0.5973 | 30.8142 | |
|
| 0.3935 | 1.3 | 10000 | 0.5444 | 29.0208 | |
|
| 0.3307 | 1.43 | 11000 | 0.5024 | 27.0434 | |
|
| 0.2937 | 1.56 | 12000 | 0.4608 | 24.7318 | |
|
| 0.2471 | 1.69 | 13000 | 0.4259 | 22.8940 | |
|
| 0.2357 | 1.82 | 14000 | 0.3936 | 21.6018 | |
|
| 0.2292 | 1.95 | 15000 | 0.3776 | 20.8004 | |
|
| 0.1493 | 2.08 | 16000 | 0.4599 | 24.0491 | |
|
| 0.1708 | 2.21 | 17000 | 0.4370 | 23.3443 | |
|
| 0.1385 | 2.34 | 18000 | 0.4277 | 22.3171 | |
|
| 0.1288 | 2.47 | 19000 | 0.4050 | 21.0118 | |
|
| 0.1627 | 2.6 | 20000 | 0.4507 | 23.4004 | |
|
| 0.1675 | 2.73 | 21000 | 0.4346 | 22.8261 | |
|
| 0.159 | 2.86 | 22000 | 0.4179 | 22.2949 | |
|
| 0.1458 | 2.99 | 23000 | 0.3978 | 21.0810 | |
|
| 0.0487 | 3.12 | 24000 | 0.4456 | 20.8617 | |
|
| 0.0401 | 3.25 | 25000 | 0.4485 | 20.6842 | |
|
|
|
### Transcription: |
|
|
|
```python |
|
from datasets import load_dataset, Audio |
|
import torch |
|
from transformers import WhisperProcessor, WhisperForConditionalGeneration |
|
|
|
# device |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
# load the model |
|
processor = WhisperProcessor.from_pretrained("clu-ling/whisper-small-spanish") |
|
model = WhisperForConditionalGeneration.from_pretrained("clu-ling/whisper-small-spanish").to(device) |
|
forced_decoder_ids = processor.get_decoder_prompt_ids(language="es", task="transcribe") |
|
|
|
# load the dataset |
|
commonvoice_eval = load_dataset("mozilla-foundation/common_voice_11_0", "es", split="validation", streaming=True) |
|
commonvoice_eval = commonvoice_eval.cast_column("audio", Audio(sampling_rate=16000)) |
|
sample = next(iter(commonvoice_eval))["audio"] |
|
|
|
# features and generate token ids |
|
input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features |
|
predicted_ids = model.generate(input_features.to(device), forced_decoder_ids=forced_decoder_ids) |
|
|
|
# decode |
|
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) |
|
|
|
print(transcription) |
|
|
|
``` |
|
|
|
### Evaluation: |
|
|
|
Evaluates this model on `mozilla-foundation/common_voice_11_0` test split. |
|
|
|
```python |
|
from transformers.models.whisper.english_normalizer import BasicTextNormalizer |
|
from datasets import load_dataset, Audio |
|
import evaluate |
|
import torch |
|
import re |
|
from transformers import WhisperProcessor, WhisperForConditionalGeneration |
|
|
|
# device |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
# metric |
|
wer_metric = evaluate.load("wer") |
|
|
|
# model |
|
processor = WhisperProcessor.from_pretrained("clu-ling/whisper-small-spanish") |
|
model = WhisperForConditionalGeneration.from_pretrained("clu-ling/whisper-small-spanish") |
|
|
|
# dataset |
|
dataset = load_dataset("mozilla-foundation/common_voice_11_0", "es", split="test", )#cache_dir=args.cache_dir |
|
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000)) |
|
|
|
#for debuggings: it gets some examples |
|
#dataset = dataset.shard(num_shards=10000, index=0) |
|
#print(dataset) |
|
|
|
def normalize(batch): |
|
batch["gold_text"] = whisper_norm(batch['sentence']) |
|
return batch |
|
|
|
def map_wer(batch): |
|
model.to(device) |
|
forced_decoder_ids = processor.get_decoder_prompt_ids(language = "es", task = "transcribe") |
|
inputs = processor(batch["audio"]["array"], sampling_rate=batch["audio"]["sampling_rate"], return_tensors="pt").input_features |
|
with torch.no_grad(): |
|
generated_ids = model.generate(inputs=inputs.to(device), forced_decoder_ids=forced_decoder_ids) |
|
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
batch["predicted_text"] = whisper_norm(transcription) |
|
return batch |
|
|
|
# process GOLD text |
|
processed_dataset = dataset.map(normalize) |
|
# get predictions |
|
predicted = processed_dataset.map(map_wer) |
|
|
|
# word error rate |
|
wer = wer_metric.compute(references=predicted['gold_text'], predictions=predicted['predicted_text']) |
|
wer = round(100 * wer, 2) |
|
print("WER:", wer) |
|
|
|
|
|
``` |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.25.1 |
|
- Pytorch 1.13.0+cu117 |
|
- Datasets 2.7.1 |
|
- Tokenizers 0.13.2 |
|
|