Configuration Parsing
Warning:
In config.json: "architectures" must be an array
Calbert: a Catalan Language Model
Introduction
CALBERT is an open-source language model for Catalan pretrained on the ALBERT architecture.
It is now available on Hugging Face in its tiny-uncased
version (the one you're looking at) and base-uncased
as well, and was pretrained on the OSCAR dataset.
For further information or requests, please go to the GitHub repository
Pre-trained models
Model | Arch. | Training data |
---|---|---|
codegram / calbert-tiny-uncased |
Tiny (uncased) | OSCAR (4.3 GB of text) |
codegram / calbert-base-uncased |
Base (uncased) | OSCAR (4.3 GB of text) |
How to use Calbert with HuggingFace
Load Calbert and its tokenizer:
from transformers import AutoModel, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("codegram/calbert-tiny-uncased")
model = AutoModel.from_pretrained("codegram/calbert-tiny-uncased")
model.eval() # disable dropout (or leave in train mode to finetune
Filling masks using pipeline
from transformers import pipeline
calbert_fill_mask = pipeline("fill-mask", model="codegram/calbert-tiny-uncased", tokenizer="codegram/calbert-tiny-uncased")
results = calbert_fill_mask("M'agrada [MASK] això")
# results
# [{'sequence': "[CLS] m'agrada molt aixo[SEP]", 'score': 0.4403671622276306, 'token': 61},
# {'sequence': "[CLS] m'agrada més aixo[SEP]", 'score': 0.050061386078596115, 'token': 43},
# {'sequence': "[CLS] m'agrada veure aixo[SEP]", 'score': 0.026286985725164413, 'token': 157},
# {'sequence': "[CLS] m'agrada bastant aixo[SEP]", 'score': 0.022483550012111664, 'token': 2143},
# {'sequence': "[CLS] m'agrada moltíssim aixo[SEP]", 'score': 0.014491282403469086, 'token': 4867}]
Extract contextual embedding features from Calbert output
import torch
# Tokenize in sub-words with SentencePiece
tokenized_sentence = tokenizer.tokenize("M'és una mica igual")
# ['▁m', "'", 'es', '▁una', '▁mica', '▁igual']
# 1-hot encode and add special starting and end tokens
encoded_sentence = tokenizer.encode(tokenized_sentence)
# [2, 109, 7, 71, 36, 371, 1103, 3]
# NB: Can be done in one step : tokenize.encode("M'és una mica igual")
# Feed tokens to Calbert as a torch tensor (batch dim 1)
encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0)
embeddings, _ = model(encoded_sentence)
embeddings.size()
# torch.Size([1, 8, 312])
embeddings.detach()
# tensor([[[-0.2726, -0.9855, 0.9643, ..., 0.3511, 0.3499, -0.1984],
# [-0.2824, -1.1693, -0.2365, ..., -3.1866, -0.9386, -1.3718],
# [-2.3645, -2.2477, -1.6985, ..., -1.4606, -2.7294, 0.2495],
# ...,
# [ 0.8800, -0.0244, -3.0446, ..., 0.5148, -3.0903, 1.1879],
# [ 1.1300, 0.2425, 0.2162, ..., -0.5722, -2.2004, 0.4045],
# [ 0.4549, -0.2378, -0.2290, ..., -2.1247, -2.2769, -0.0820]]])
Authors
CALBERT was trained and evaluated by Txus Bach, as part of Codegram's applied research.
- Downloads last month
- 10