codymd's picture
End of training
14d5b33 verified
|
raw
history blame
4.44 kB
metadata
library_name: transformers
license: apache-2.0
base_model: albert/albert-base-v2
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: albert-base-v2-grammar-ner-generic
    results: []

albert-base-v2-grammar-ner-generic

This model is a fine-tuned version of albert/albert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0991
  • Accuracy: 0.9891
  • F1 Macro: 0.9176
  • F1 Micro: 0.9176
  • Precision Macro: 0.9647
  • Precision Micro: 0.9647
  • Recall Macro: 0.875
  • Recall Micro: 0.875

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 18

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro F1 Micro Precision Macro Precision Micro Recall Macro Recall Micro
0.244 1.0 93 0.1830 0.9305 0.2897 0.2897 0.3892 0.3892 0.2308 0.2308
0.1652 2.0 186 0.1476 0.9450 0.4236 0.4236 0.6644 0.6644 0.3109 0.3109
0.1119 3.0 279 0.1070 0.9656 0.6759 0.6759 0.7313 0.7313 0.6282 0.6282
0.0629 4.0 372 0.0884 0.9751 0.7764 0.7764 0.8453 0.8453 0.7179 0.7179
0.0408 5.0 465 0.0954 0.9748 0.7911 0.7911 0.7873 0.7873 0.7949 0.7949
0.028 6.0 558 0.0830 0.9799 0.8143 0.8143 0.9194 0.9194 0.7308 0.7308
0.0185 7.0 651 0.0756 0.9831 0.8700 0.8700 0.8714 0.8714 0.8686 0.8686
0.0125 8.0 744 0.0815 0.9841 0.8591 0.8591 0.9134 0.9134 0.8109 0.8109
0.0073 9.0 837 0.0809 0.9854 0.8773 0.8773 0.8963 0.8963 0.8590 0.8590
0.0046 10.0 930 0.0895 0.9870 0.8908 0.8908 0.9526 0.9526 0.8365 0.8365
0.0022 11.0 1023 0.0903 0.9867 0.8972 0.8972 0.9136 0.9136 0.8814 0.8814
0.0009 12.0 1116 0.0957 0.9889 0.9130 0.9130 0.9545 0.9545 0.875 0.875
0.0005 13.0 1209 0.0931 0.9891 0.9149 0.9149 0.9547 0.9547 0.8782 0.8782
0.0002 14.0 1302 0.0978 0.9891 0.9176 0.9176 0.9647 0.9647 0.875 0.875
0.0001 15.0 1395 0.0982 0.9891 0.9176 0.9176 0.9647 0.9647 0.875 0.875
0.0 16.0 1488 0.0986 0.9889 0.9161 0.9161 0.9613 0.9613 0.875 0.875
0.0 17.0 1581 0.0990 0.9891 0.9176 0.9176 0.9647 0.9647 0.875 0.875
0.0 18.0 1674 0.0991 0.9891 0.9176 0.9176 0.9647 0.9647 0.875 0.875

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3