See axolotl config
axolotl version: 0.4.1
strict: false
base_model: meta-llama/Llama-3.1-8B-Instruct
tokenizer_config: meta-llama/Llama-3.1-8B-Instruct
model_type: AutoModelForCausalLM
# Output configuration
hub_model_id: collinear-ai/collinear-reliability-judge-llama8b-veritas-full-redo
dataset_prepared_path: data/collinear-reliability-judge-llama8b-veritas-full-redo
output_dir: model/collinear-reliability-judge-llama8b-veritas-full-redo
chat_template: llama3 #llama 3 instruct chat template USE
datasets:
- path: collinear-ai/veritas-data-full-expanded
split: train
type: chat_template
chat_template: llama3
field_messages: messages
message_field_role: role
message_field_content: content
train_on_inputs: false
test_datasets:
- path: collinear-ai/veritas-data-full-expanded
split: val
type: chat_template
chat_template: llama3
field_messages: messages
message_field_role: role
message_field_content: content
# Data packing
sequence_len: 9000
eval_sample_packing: false
pad_to_sequence_len: true
group_by_length: false
# Lora config
# adapter:
adapter: qlora
lora_model_dir:
load_in_4bit: true
load_in_8bit: false
lora_r: 64
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
lora_modules_to_save:
- embed_tokens
- lm_head
# Logging config
wandb_project: collinear-reliability-judge
wandb_entity: nazneen
wandb_name: collinear-reliability-judge-llama8b-veritas-full-redo
# Trainer config
gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: constant_with_warmup
learning_rate: 0.000005
bfloat16: true
bf16: true
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 10
xformers_attention:
flash_attention: true
save_safetensors: true
warmup_steps: 100
evals_per_epoch: 4
eval_table_size: 3
eval_max_new_tokens: 500
saves_per_epoch: 4
debug:
deepspeed:
weight_decay: 0.05
fsdp_config:
special_tokens:
pad_token: "<|end_of_text|>"
collinear-reliability-judge-llama8b-veritas-full-redo
This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3578
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 100
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0002 | 1 | 0.9233 |
0.3268 | 0.2501 | 1214 | 0.3952 |
0.3082 | 0.5002 | 2428 | 0.3766 |
0.3165 | 0.7502 | 3642 | 0.3683 |
0.3066 | 1.0003 | 4856 | 0.3629 |
0.31 | 1.2504 | 6070 | 0.3606 |
0.2878 | 1.5005 | 7284 | 0.3579 |
0.2798 | 1.7505 | 8498 | 0.3578 |
Framework versions
- PEFT 0.12.0
- Transformers 4.45.0.dev0
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 49
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for collinear-ai/collinear-reliability-judge-llama8b-veritas-full-redo
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct