layoutlm-funsd-tf / README.md
cor-c's picture
Upload processor
eaba09a verified
|
raw
history blame
2.95 kB
metadata
license: mit
tags:
  - generated_from_keras_callback
base_model: cor-c/layoutlm-funsd-tf
model-index:
  - name: layoutlm-funsd-tf
    results: []

layoutlm-funsd-tf

This model is a fine-tuned version of cor-c/layoutlm-funsd-tf on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0632
  • Validation Loss: 0.8795
  • Train Overall Precision: 0.7424
  • Train Overall Recall: 0.8038
  • Train Overall F1: 0.7719
  • Train Overall Accuracy: 0.8103
  • Epoch: 7

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'inner_optimizer': {'module': 'transformers.optimization_tf', 'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': 2.9999999242136255e-05, 'decay': 0.0, 'beta_1': 0.8999999761581421, 'beta_2': 0.9990000128746033, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}, 'registered_name': 'AdamWeightDecay'}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
  • training_precision: mixed_float16

Training results

Train Loss Validation Loss Train Overall Precision Train Overall Recall Train Overall F1 Train Overall Accuracy Epoch
0.2119 0.7340 0.7292 0.8053 0.7654 0.8046 0
0.1948 0.7521 0.7406 0.7963 0.7674 0.8027 1
0.1485 0.7879 0.7256 0.7988 0.7604 0.8019 2
0.1220 0.7861 0.7403 0.7983 0.7682 0.8073 3
0.1003 0.8253 0.7495 0.8018 0.7748 0.8087 4
0.0825 0.8617 0.7491 0.7968 0.7722 0.8048 5
0.0676 0.8938 0.7503 0.8128 0.7803 0.8062 6
0.0632 0.8795 0.7424 0.8038 0.7719 0.8103 7

Framework versions

  • Transformers 4.41.0.dev0
  • TensorFlow 2.16.1
  • Datasets 2.19.1
  • Tokenizers 0.19.1