segformer-webots-grasp
This model is a fine-tuned version of nvidia/mit-b0 on an unknown dataset. It achieves the following results on the evaluation set:
- eval_loss: 2.6628
- eval_mean_iou: 0.8546
- eval_mean_accuracy: 0.8633
- eval_overall_accuracy: 0.8633
- eval_per_category_iou: [0.8545649439735425, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]
- eval_per_category_accuracy: [0.8632884477610067, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]
- eval_runtime: 53.0339
- eval_samples_per_second: 0.396
- eval_steps_per_second: 0.207
- epoch: 2.6
- step: 104
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 4
Model tree for correll/segformer-webots-grasp
Base model
nvidia/mit-b0