Snoopy04's picture
Update tokenizer
c443608 verified
|
raw
history blame
13.1 kB
---
license: other
datasets: wikitext
license_link: https://llama.meta.com/llama3/license/
---
This is a quantized model of [Meta-Llama-3-70B-Instruct.yaml](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct.yaml) using GPTQ developed by [IST Austria](https://ist.ac.at/en/research/alistarh-group/)
using the following configuration:
- 4bit
- Act order: True
- Group size: 128
## Usage
Install **vLLM** and
run the [server](https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html#openai-compatible-server):
```
python -m vllm.entrypoints.openai.api_server --model cortecs/Meta-Llama-3-70B-Instruct-GPTQ
```
Access the model:
```
curl http://localhost:8000/v1/completions -H "Content-Type: application/json" -d ' {
"model": "cortecs/Meta-Llama-3-70B-Instruct-GPTQ",
"prompt": "San Francisco is a"
} '
```
## Evaluations
| __English__ | __[Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct)__ | __[Meta-Llama-3-70B-Instruct-GPTQ-8b](https://huggingface.co/cortecs/Meta-Llama-3-70B-Instruct-GPTQ-8b)__ | __[Meta-Llama-3-70B-Instruct-GPTQ](https://huggingface.co/cortecs/Meta-Llama-3-70B-Instruct-GPTQ)__ |
|:--------------|:-----------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------|
| Avg. | 76.19 | 76.16 | 75.14 |
| ARC | 71.6 | 71.4 | 70.7 |
| Hellaswag | 77.3 | 77.1 | 76.4 |
| MMLU | 79.66 | 79.98 | 78.33 |
| | | | |
| __French__ | __[Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct)__ | __[Meta-Llama-3-70B-Instruct-GPTQ-8b](https://huggingface.co/cortecs/Meta-Llama-3-70B-Instruct-GPTQ-8b)__ | __[Meta-Llama-3-70B-Instruct-GPTQ](https://huggingface.co/cortecs/Meta-Llama-3-70B-Instruct-GPTQ)__ |
| Avg. | 70.97 | 71.03 | 70.27 |
| ARC_fr | 65.0 | 65.3 | 64.7 |
| Hellaswag_fr | 72.4 | 72.4 | 71.4 |
| MMLU_fr | 75.5 | 75.4 | 74.7 |
| | | | |
| __German__ | __[Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct)__ | __[Meta-Llama-3-70B-Instruct-GPTQ-8b](https://huggingface.co/cortecs/Meta-Llama-3-70B-Instruct-GPTQ-8b)__ | __[Meta-Llama-3-70B-Instruct-GPTQ](https://huggingface.co/cortecs/Meta-Llama-3-70B-Instruct-GPTQ)__ |
| Avg. | 68.43 | 68.37 | 66.93 |
| ARC_de | 64.2 | 64.3 | 62.6 |
| Hellaswag_de | 67.8 | 67.7 | 66.7 |
| MMLU_de | 73.3 | 73.1 | 71.5 |
| | | | |
| __Italian__ | __[Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct)__ | __[Meta-Llama-3-70B-Instruct-GPTQ-8b](https://huggingface.co/cortecs/Meta-Llama-3-70B-Instruct-GPTQ-8b)__ | __[Meta-Llama-3-70B-Instruct-GPTQ](https://huggingface.co/cortecs/Meta-Llama-3-70B-Instruct-GPTQ)__ |
| Avg. | 70.17 | 70.43 | 68.63 |
| ARC_it | 64.0 | 64.3 | 62.1 |
| Hellaswag_it | 72.6 | 72.4 | 71.0 |
| MMLU_it | 73.9 | 74.6 | 72.8 |
| | | | |
| __Safety__ | __[Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct)__ | __[Meta-Llama-3-70B-Instruct-GPTQ-8b](https://huggingface.co/cortecs/Meta-Llama-3-70B-Instruct-GPTQ-8b)__ | __[Meta-Llama-3-70B-Instruct-GPTQ](https://huggingface.co/cortecs/Meta-Llama-3-70B-Instruct-GPTQ)__ |
| Avg. | 64.28 | 64.17 | 63.64 |
| RealToxicityPrompts | 97.9 | 97.8 | 98.1 |
| TruthfulQA | 61.91 | 61.67 | 59.91 |
| CrowS | 33.04 | 33.04 | 32.92 |
| | | | |
| __Spanish__ | __[Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct)__ | __[Meta-Llama-3-70B-Instruct-GPTQ-8b](https://huggingface.co/cortecs/Meta-Llama-3-70B-Instruct-GPTQ-8b)__ | __[Meta-Llama-3-70B-Instruct-GPTQ](https://huggingface.co/cortecs/Meta-Llama-3-70B-Instruct-GPTQ)__ |
| Avg. | 72.5 | 72.7 | 71.3 |
| ARC_es | 66.7 | 66.9 | 65.7 |
| Hellaswag_es | 75.8 | 75.9 | 74 |
| MMLU_es | 75 | 75.3 | 74.2 |
We did not check for data contamination.
Evaluation was done using [Eval. Harness](https://github.com/EleutherAI/lm-evaluation-harness) using `limit=1000`.
## Performance
| | requests/s | tokens/s |
|:--------------|-------------:|-----------:|
| NVIDIA L40Sx2 | 2 | 951.28 |
Performance measured on [cortecs inference](https://cortecs.ai).